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ABSTRACT
In indoor environments, there would be several small objects
lying around on the floor. In this work, we develop an e�-
cient strategy to search for a set of queried objects amongst
a large number of small objects lying around. Small objects
of the order of 1cm � 5cm, appear very small, making it
di�cult for the present algorithms to recognize them from
far away. A human like strategy in such cases is to infer
each object’s similarity to the queried objects, from far away.
Subsequently, the objects of interest are approached and an-
alyzed from a closer proximity through an optimal plan. We
develop an optimal plan for the robot, to strategically visit
a selected few among all the objects. From far away, we as-
sign Existential Probabilities to the objects, indicating their
similarity to queried objects. A Bayes’ Net is constructed
over the probabilities, to overlay and orient a Viewpoint
Object Potential(VOP) map over potential search objects.
VOP quantifies the probability of accurately recognizing an
object through its RGB-D Point Cloud at various view-
points. The belief from the Bayes’ Net and the discrimi-
native viewpoints from the VOP are utilized to formulate
a Decision Tree which helps in building an optimal control
plan. Hence, the robot reaches strategic viewpoints around
potential objects, to recognize them through their RGB-D
point clouds. The framework is experimentally evaluated
using Kinect mounted on a Turtlebot using ROS platform.
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1. INTRODUCTION
In an indoor setting, a robot has to search for a set of ob-

jects in large unknown environments, where many objects
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Figure 1: (a)Typical scene. (b)Floor segmentation
for object detection. (c)VOP map integration for
viewpoint planning. (d)Path traversed by robot
during object search.

lay scattered on floor. We try to address a similar case,
where the environment spans over 10m ⇥ 10m and objects
as small as 1-5cm lie on the floor. Using early probabilistic
inferences based on sparse images and object viewpoint se-
lection for robust object recognition, a set of optimal control
actions is planned. In this work, we accomplish fast active
visual object search, by maximizing the reward earned by a
robot, through a Decision Tree [17] formulation.

Present object search paradigms [3] cater to the cases
where the objects are close to the camera, large in size and
are generally lying on tables in an environment, which is
small. Since a dominant part of the image captures the
object, both 2D and 3D quality features points can be ex-
tracted. Also, when the objects are all close by, the robot
need not travel large distances to verify all objects. On the
contrary, for a mobile robot working in a moderately large
indoor environment, the robot-object distance can vary sig-
nificantly, which is often too large to infer reliable informa-
tion using traditional approaches. In this paper, we tackle
the problem of searching for small objects (of size 1cm-5cm)
in large environments (of size 10m⇥ 10m).

Methods applying Spatial topological relations [4] prove
their e�cacy very well in large spaces with distinct small
partitions. While searching in a large room, lack of an ac-
curate prior estimate about the object from far away would
lead the robot to approach each object in pursuit of queried
object. In a large room, such strategies would prove to be
fairly time-consuming.

We try to build a novel framework inspired by human
perception in such scenarios. When a particular object is to
be searched in a large room, where many small objects are



present, an initial prior estimate of each object’s similarity
to the object of interest is ascertained from far away. Of
the many objects present in the large scene, we move only
towards those objects that at most resemble our interest
objects while neglecting others. Finally, we do a check from
the best viewpoint before any manipulation. We adopt a
similar sequence of actions to search for a set of queried
objects Os .

Our system has four modules. Firstly, for a given scene
we detect and segment out the objects that are lying on
the floor(Fig 1(b)). The small objects are obtained as apart
from the ground, as the result of an MRF energy minimiza-
tion, over the residual of the homography error. Secondly,
we find the existential probability of a detected object f
being a particular object oq from far away, from where, im-
ages with resolution of around 20 ⇥ 20 pixels are available.
This is done by training Gaussian Mixture Models(GMM)
for each of the objects(section 3.4). If the existential prob-
ability of the object f being the object oq poses a strong
belief, its best viewpoints are estimated accordingly based
on its profile which is encoded as a VOP map(Fig 1). This
constitutes the third phase(section 3.5). Further, we use a
Decision Tree(DT) formulation (section 3.7), to choose the
sequence of optimal control actions that ends with object
recognition. The utility function being maximized trade-
o↵s between robot trajectory length and object recognition
accuracy for di↵erent viewpoints.

The main contribution of this e↵ort is a formulation that
captures human intuition while searching for small objects.
In other words the ability to make a prior guess about the ob-
ject from far and then move towards it, make further obser-
vations on it and confirm its presence or absence. The ability
to guess about an object’s existence is achieved through the
GMM described above as it provides for the initial guess
through the object’s existential probability. Secondly, the
paper also brings to light that in a robotic setting the ob-
ject can be seen from various viewpoints and the recogni-
tion probability varies with viewpoint and distance. To this
e↵ect a new data structure called Viewpoint Object Poten-
tials (VOP) introduced by the authors in the supplementary
material attached with this submission [20]. The VOP es-
sentially summarizes the detection probability of an object
at various angles and distances around it. For example a
shampoo bottle is best recognized from its frontal view than
from its side view due to sparsity of features and keypoints.
Thirdly, the proposed approach combines early guesses with
final best viewpoint recognition locations into an optimal de-
cision making framework through Decision Trees (DT). DT
scales to situations where more than one object needs to
be searched and the scene is littered with multiple objects.
Most crucially and in order to capture the full ramifications
of the problem, DT computes the optimal path by also in-
corporating failure probabilities of its control actions along
its edges. Without which the resulting path is likely to be
suboptimal.

2. RELATED WORKS
The problem of object search has been studied in the

past, in various related contexts like environment summa-
rization, object oriented exploration, spatial semantic mod-
elling, etc. In 1976, Garvey [5] proposed an indirect ob-
ject search method showcasing the need to limit the search
space. Subsequently, Bajcsy [8] introduced the term active

perception which encourages sensor and viewpoint planning
to achieve higher levels of accuracy in object recognition [18].
In the recent past, works like [2], [7] argue about strong
correlation between 3D structure of the surrounding envi-
ronment and object placement, showing that organization is
highly expressible in terms of spatial topological relations.
[6] provides a solution for search and localization of objects
using a monocular camera with zooming capabilities to over-
come the limitations of low resolution images of distant small
objects.

[4] gives a strategy based on the probabilistic model, POMDP,
making use of uncertain semantics between the object and
its location, for prioritizing the search e↵ort to promising
locations in a partially known environment. In it, a prob-
abilistic semantic mapping framework is proposed, defining
joint distribution between each object category and room
category. Hence, at a higher level of abstraction, it would
be able to discover a plausible location of the object Oq . In
our work, we try to bridge the voids encountered in scenar-
ios where semantic relations start to weaken. For instance,
when robot enters a particular room searching for objects
like marker pen or water bottle, it may find such small ob-
jects anywhere impartial to any location. Since such objects
do not possess any semantic relationships with the environ-
ment or among themselves, they have to be searched explic-
itly all over the place.

In line with this paradigm, in our work, we develop a sys-
tem to counter such unaddressed subjects. We explore how
early inferences about small, far away objects can be e↵ec-
tively used for e�cient control action planning. We maxi-
mize the object recognition accuracy by identifying the dis-
criminative viewpoints. On top of this we develop an overall
framework that integrates the above strategies in a robust
manner through a DT.

3. PROPOSED APPROACH

3.1 System Overview
The motivation behind this object search system is not

only to reduce navigation but also to boost the robustness
of object recognition module simultaneously. The flow di-
agram(Fig 2) presents the main idea of our framework for
the object search problem. We now cast our search problem,
more formally.

Let O = {oi}N1 be the set of N objects that exist in the
environment. A robot is given the task of searching for a
set of queried objects Os ✓ O. We would want to find all
the objects in Os in minimum time with maximum accuracy.
This can be achieved with a fast e�cient plan, by visiting
only those objects in the scene, which we believe are similar
to objects in Os.

There are four modules which contribute to achieve the
goal of fast object search. The object detection and local-
ization module(section 3.3) is responsible for detecting and
segmenting the objects on the floor. Let the set of these
segmented objects be called F . A belief of each object in
F being similar to an object in Os is assigned a probability.
This is done using a set of GMMs G learned over feature
vectors(section 3.4) generated for each of the objects in O.
There would be some objects C, which appear to be similar
to queried objects Os. Hence C ✓ F . To this end, we guide
the robot to strategic viewpoints around C through a set of
planned controls(section 3.7). This is followed by recogniz-



Figure 2: Object search system overview.

ing the objects using a RGB-D data based BOW [12] model
from the best possible viewpoint, which is derived from an
object recognition profile(section 3.5).

3.2 System Pipeline
Below, we explain in detail our system pipeline,

1. Initially, objects as far as 5m, which are found lying
on the floor, are segmented out (Fig 2(a)) using the
algorithm proposed in [1]. The set of objects found
is denoted by F . A detailed description is given in
section 3.3.

2. For each object in F , if the pointcloud size Csi �
Cst(threshold) (Fig 2) recognition is directly performed
over the RGB-D point cloud data using an SVM [14]
classifier over Visual BOW models.

3. If Csi < Cst, no clear RGB-D information is available.
From far away, for each of the objects in F , we assign
a probability(Pfi), of fi being similar to an object oq
in Os using a GMM module detailed in section 3.4(Fig
2(b)). The probabilities help the robot rule out some
of the objects in F . C ✓ F is the set of objects that
need closer inspection.

4. For an object ci similar to an object oq in Os, we build
a Viewpoint Object Potential Map(VOP) of oq around
ci on the original map(Fig 2(c)). VOP map helps us
determine best viewpoints for object recognition and
helps formulate the DT. A set V of such high accu-
racy viewpoints are determined for all the objects in
C. The VOP map and its importance in context with
the problem is described in section 3.5.2.

5. The viewpoints (V) from VOP map and the existen-
tial probability (Pfi) from GMM module are used to
build a DT((Fig 2(d)) which would help in guiding
the robot to strategic locations while it maximizes the
utility and the reward obtained(Fig 2(e)). Hence, the
cost incurred in the process of navigating through all
objects in C is minimized.

6. If for all objects in F , Pi < Pt, then the algorithm
iterates after moving a finite step towards the objects,
to gather more information about them.

3.3 Object Detection and Localization
The first function that is performed by the robot is to

segment out objects from the floor. Through the approach
presented in [1], we di↵erentiate small objects (1-5cm) of in-
terest from the floor, in which a state of the art superpixeling
technique is used followed by a Graph Cut over the MRF
formulation using the superpixels. This produces promising
results in diverse set of environments(Fig 7). Further, the
objects can be easily segmented out because the superpixels
that are formed, align around the edges of the objects(Fig
7). It is important that the location of the objects is also
known by the robot, to reach the objects. Since the cam-
era height is fixed, objects can be fairly localized using the
traditional pinhole projection approach [9].

3.4 Guess from far by GMMs
Small objects seen at a distance of few meters hardly take

more than 20 ⇥ 20 pixels and hence are di�cult to detect
with features based object recognition methods. However it
is still possible to discern the contour [16] and RGB texture.
We build this module upon our previous work [20]. We
construct 7-dimensional feature descriptors for each small or
far away object images. Based on these descriptors, a GMM
model is estimated for each object. In this work, modelling
is performed over contours using Hu image Moments [15]
and RGB histogram. The complete process of building the
model is discussed in [20].

The GMM gives the likelihood Pfi, of correspondence be-
tween testing feature vector and object Oq. If Pfi (existen-
tial probability) crosses a threshold, then that object is ex-
amined from proximity. In section 3.6, we describe how Pfi

over several images are used by a Bayesian Network to up-
date the existential probability and further integrated with
viewpoint object probability for object recognition decision
process from distance.

Then comparison is done between the testing feature vec-
tor V 0

f with all stored feature vectors V n
l of the recognized

object. By finding the best correspondence match with
stored feature vectors, object’s orientation in that view is
estimated. This helps lay the VOP map for viewpoint plan-
ning explained in section 3.5.

3.5 Recognition from Near: Viewpoint Plan-
ning based Object Recognition

3.5.1 Object Recognition
As we deal with small objects, there is always a question



Figure 3: VOP map for (a)an object with a slim
sideline and a wide object (b)cuboid shaped object
(c)a symmetric object.

as to whether su�cient quality keypoints would be avail-
able for high precision object recognition. Thus, the choice
of keypoint and descriptor becomes critical. It is shown in
[20], that keypoints subsampled from the object point cloud
yield higher accuracy, when compared to standard keypoints
like SIFT-3D and Harris-3D. Experimentally proven in [20],
we use PFHRGB descriptor [10] available in PCL library
[11] and use a Visual-Bag-of-Words architecture over this
descriptor to train an SVM classifier for accurate object
recognition.

3.5.2 ViewPoint Planning
Viewing angle of an object plays a vital role in object

recognition for human beings. Long and thin objects like
doors when viewed from the narrow side, will be harder
to recognize, as compared to when they are viewed from
the front, where, additional distinguishing features are vis-
ible. In our experiments, we found that in the case of cer-
tain asymmetric objects, the recognition accuracy could vary
drastically with viewing angle, as quantitatively shown in
Section 4.3 .

Keeping this variance in mind, we use the data-structure
proposed in [20] that indicates optimal viewpoints for high
accuracy object recognition. The data structure, called the
Viewpoint Object Potential (VOP), is a polar histogram
that gives belief values for correct object recognition as a
function of viewing distance and angle. The radius of the
polar histogram varies from 75cm to an object dependent
radius beyond which recognition probabilities fall to below
25%. The angle of the polar histogram is the viewing angle
of the robot with respect to a 0� configuration, we decide on
beforehand.

Fig 3 shows the VOPs of various objects. In the his-
togram, the colors indicate belief values as given by the scale
on the extreme right of the figure. Red represents high be-
lief values, and blue represents low. For example in Fig 3(a)
the red arrow depicted indicates that if the object is viewed
at an angle of 225� degrees and distance of 75-100cm has a
very high probability of being recognized, as the arrowhead
falls on a red bin. In 3(b), when the object is viewed at an-
gles 45�, 225�, 315� at distances 75-100cm, the recognition
accuracy is quite high. Similarly, Fig 3(c) shows that the
recognition accuracy is uniform for all viewing angles as the
object is symmetric.

3.6 Integrating GMM and VOP map
We now present our formulation for updating the VOP for

an object of interest by integrating existential probabilities
over multiple images. Consider the Bayes’ network shown
in Fig. 4. Here, I1 and I2 denote the images, which contain
segmented object, Of in F . Ecf is a binary random variable
which takes 1 when the GMM belief on the object is greater

Figure 4: (a)Bayes’ net to estimate existential prob-
ability of an object through two images. (b)Bayes’
net integrates successful object recognition.

than a threshold(Pt). P (Ecf )(referred as Pfi in Section 3.4)
is the probability that the object Of is similar to Oc in set
Os. P (Ecf |I1) is typically the GMM score obtained over
the segmented object in the image. The score computes the
probability that the object Oc exists in the given image I1.
Rcf (x, y, ✓)) is a random variable that denotes if the object
Of can be recognized as Os at a viewpoint (x, y, ✓) of the
robot surrounding Of . This viewpoint is obtained from the
VOP map of the object Oc. Then P (Rcf ) is given by the
VOP of the Oc for a pose (x, y, ✓). The VOP around Of is
built using that of Oc as explained in section(3.5). Let � be
the set of all poses around the object Of where the VOP has
non-zero value. The objective is to compute a pose �⇤ 2 �,
wherein

�

⇤ = argmax(�)P (Rcf (�), Ecf |I1, I2) (1)

In other words, we want to find the viewpoint within the
VOP map area that has the maximum joint probability of
detection and existence given two subsequent views I1 and
I2 of the same segmented object. The above expression helps
solve this decision problem under uncertainty, by propagat-
ing the belief about the presence of object over series of
images I1, I2, I3,...,In. All expressions are shown for only
two image frames, though they are scalable over n frames.

We now derive the expression for the conditional distribu-
tion P (Rcf , Ecf |I1, I2).

P (Rcf , Ecf |I1, I2) =
P (Rcf , Ecf , I1, I2)

p(I1, I2)
(2)

P (Rcf , Ecf |I1, I2) =
P (Rcf |Ecf )P (Ecf |I1, I2)P (I1)p(I2)

P (I1)p(I2)
(3)

In the above equation, the numerator is derived from the
Bayes’ network in Fig 4(a). Hence,

P (Rcf , Ecf |I1, I2) = P (Rcf |Ecf )P (Ecf |I1, I2) (4)

The above expression upon application of Bayes’ rule can
be shown to reduce to

P (Rcf , Ecf |I1, I2) = ⌘P (Rcf |Ecf )P (Ecf |I1)P (Ecf |I2) (5)

where ⌘ is the normalization constant. Hence, in general
when there are n images,

�

⇤ = argmax(�)P (Rcf |Ecf )P (Ecf |I1) . . . P (Ecf |In) (6)

The first term on the right(Eqn 6) is nothing but the
VOP of the object Oc. The subsequent terms compute the
existential probability of the object Of as Oc over multi-
ple views, where each such P (Ecf |Ik) is computed from the
GMM score.

For conciseness, we denote both the conditional and joint
distributions as recognition probability distribution for the



rest of the paper. It is the probability of recognizing the
object by 3-D point cloud analysis at a pose � 2 �.

At times, the object search algorithm is entailed to inte-
grate the 3-D recognition probabilities apart from the GMM
scores to compute the existential probability of the object.
This is shown in the network(Fig 4(b)) where the classifier
probability is shown as PC . This is further elaborated in
section (3.7) where its utility comes into play.

3.7 DT based object exploration
A Decision Tree(DT) is a Directed Acyclic Graph that

computes a sequence of control actions which maximizes
the expected utility over the graph. DT is typically rep-
resented by DT = (V,E), a set of nodes V and edges E,
wherein V = Vc

S
Vd is the union of two disjoint sets of

Chance nodes(Vc) and Decision nodes(Vd). E = Ep
S

Eu is
the union of Probability edges(Ep) whose weights are prob-
abilities and Control edges(Eu). The leaf nodes of the DT
contain the reward for choosing the path from the root node
to the respective leaf nodes. Starting from the leaf node,
the expected utility is calculated at every Chance node Vc

bottom up [17]. Thus at every decision node Vd, the control
sequence that maximizes the expected utility amongst all
paths emanating from Vd is calculated.

Figure 5: Decision tree depicting the various nodes
and controls.

The problem of object search in our scenario is modeled
as a Decision Tree(DT)(Fig 5) [17]. The root node(Start)
is a Decision node which propagates a set of Control edges
to Chance/Probability nodes. The Chance nodes(V1, V2,
V3, ...) are the locations on the VOP map of an object
of interest from where the accuracy of recognizing that ob-
ject is high. Each Chance node propagates to two Decision
nodes through Probability edges p(Success) and p̄(Failure).
A Success edge(P1, P2, P3, ...) denotes a successful recog-
nition of the object through its 3-D point cloud in accor-
dance with what was initially guessed about that object
using the GMM. Similarly, a failure node(1-P1,1-P2,1-P3,
. . .) denotes a failure to recognize the object in discordance
with the initial guess of the GMM. The Decision node again
propagates through a control edge(U1, U2, U3,. . .) to a new
location(Chance node) for further exploration and recogni-
tion of objects of interest. A Decision node occurring from a
Success edge typically samples high accuracy locations from
VOP maps of other objects of interest, whereas the Deci-
sion nodes arising from a Failure edge samples at least one
high accuracy point from the VOP map of the same previ-
ous object along with the points sampled for other objects of
interest. The rewards, form the leaf nodes of the graph and
are inversely proportional to the distance traveled to reach
the leaf node.

Here, we give an example of how the reward is calculated.
The reward at the node R1 for the path via Start ! U1 !
P1 ! U2 ! P2 ! R1 (Fig.5), where it passes through
two success edges(P1, P2) consecutively is 1/(d(Start, V2)+
d(V2, V5)), where d(Start, V2) is the distance that needs to
be traveled from the location of Start node to viewpoint V2

when it executed the control action U1. In other terms, the
reward for R1 can be put as 1/(d(U1) + d(U2)). Whereas
the reward through a path that failed to detect one or more
objects progressively reduces with increasing number of non-
detected objects along the path. For example, the reward
along the path start ! U1 ! P1 ! U2 ! 1-P2 ! U4 !
P4 ! R3 is computed to be 1/d(U1) + k ⇤ (d(U2) + d(U4))
wherein k is a high gain used to reduce the reward due to non
detection of the object V5. However, the object viewed from
V2 was successfully detected with a probability P1 and hence
there is no high gain associated with the distance d(U1).

Figure 6: Part of Decision tree when VOP maps
intersect

There could be cases where the VOP maps of two ob-
jects are overlapping. Then, a viewpoint in the intersection
of their VOPs from where both objects have a considerable
probability of recognition, could prove to be helpful(Fig 6).
Here VabI is a viewpoint in the intersection of VOPs of ob-
jects Oa, Ob. The reward for a path D ! U1 ! Rab would
be 1/d(U1) as both the objects are recognized with a prob-
ability PaPb. This proves to be useful in the sense that
both the objects are recognized in one go in a single control
action. Note that the probability node VabI has four prob-
ability edges emanating from it, corresponding to successful
recognition of both objects(PaPb), recognizing one of them
(PaP̄b or P̄aPb) or failure to recognize both (P̄aP̄b).

The expected reward at each Chance node(from where the
object needs to be viewed) is computed bottom up from each
leaf node. At every Decision node, the control that maxi-
mizes the expected reward is chosen. The advantage of using
a DT in the current formulation is twofold: Firstly, it pro-
vides a mechanism for integrating failure probabilities into
the expected reward and hence eventual decision making.
Secondly, it provides for alternative best paths, which can
be computed a-priori. While the best paths are always along
the success nodes, during the execution of such a best path,
the robot can fail to recognize the object initially guessed
by GMMs. Anticipating such situations, alternate paths are
precomputed and stored along failure edges that the robot
can anytime execute if it encounters a failure. During a
failure event, the VOP of the object under consideration is
updated by integrating the 3-D recognition failure probabil-
ity through the Bayes-Net in (Fig 4), described in section
3.6. While this is done to maintain consistency of the joint
probability distribution, in practice it does not change the
alternate path precomputed by anticipating the failures and
hence the DT is not updated at a failure event. Thus, the
DT is updated only when a new object comes on the horizon
and if GMM guesses it to be an object of interest. A new DT



is initiated once the queried object is found through the path
computed over the previous DT was completely executed.

4. RESULTS
We show the performance of each of the modules in the

system pipeline. Further, we validate the performance of
the system through various experiments.

4.1 Object detection and segmentation

Figure 7: (a)A sample scenario. (b)Superpixelled
scene. (c)Segmented Image.

In Fig 7, by using the approach presented in [1], objects
of height 1-cm are classified as non floor through monocu-
lar images. The objects from these images are further seg-
mented for further processing. [1] shows several scenarios
where objects on the floor can be reliably extracted out of
floor.

4.2 Probabilistic recognition using GMMs

Figure 8: (Left)Confusion matrix for object recogni-
tion using GMM module. (Right) Sample contours
for various objects.

On the whole, the GMM module is able to recognize small
objects, with high accuracy as shown in the confusion ma-
trix(Fig 8). Inaccuracies arise due to objects of similar tex-
ture and nearly identical shape contours at a distance. A
confusion can be seen where the actual object class is 6 and
predicted class is 2(Fig 8). If 2 is bigger in size than 6,
they would appear similar when 2 is farther than 6 from the
camera. Object 12 shows minimal confusion with 2, 3, 4,
6. Object 12 may be similar in shape compared to other
objects, but its texture is clearly a di↵erentiating feature.
Also, a confusion exists between 11 and 12 due to the tex-
ture they share. The significance of GMM-Module in the
pipeline is that, even when the objects are far and small, an
early weak decision about a certain object’s existence can
be made.

4.3 Analysis of viewpoint based recognition
The PFHRGB based VBoW shows an improved perfor-

mance over RGB-D Kinect Washington dataset [19] as well
small object dataset [20]. Further, the VOP analysis shown
in Fig 9 , illustrates the fact that even after successful detec-
tion and localization, the robot may end up not recognizing
the object even at closer proximity. This happens because

Figure 9: Recognition accuracy analysis of an ob-
ject.

of weak viewpoint selection. Fig 9 shows one of the ob-
jects, for which object recognition accuracy is found to be
vary significantly from di↵erent angles for the same camera-
object distance range(75-125 cm). The variation captured
shows accuracy change from 45 � 60% for worst viewpoint
as compared to 92 � 98% for viewpoints chosen using pro-
posed viewpoint planning method [20] for the same distance
range. Therefore, if VOP maps (Fig 3) are known in prior,
the performance of the object categorization algorithms can
be enhanced for such mobile robotics applications. Section
4.5 illustrates the applicability of this method through nu-
merous object search runs.

4.4 Analysis of the pipeline

Figure 10: (Left)Control actions followed while rec-
ognizing objects O1 and O4. (Right) Control actions
followed while recognizing O7

This section demonstrates the overall pipeline, over a typ-
ical scene, through the performance of various components
associated. In the scenario presented in (Fig 11.1), the robot
is required to search two objects Oa and Ob. It starts from
the position(S) as specified Fig 11.(d) and proceeds forward.
Of the many objects visible, it estimates if any of them
is similar to the queried object. At a certain iteration, it
finds that objects O1 and O4 are similar to Oa. By over-
laying the VOP map of object Oa around objects O1 and
O4, it determines two best viewpoints for O1(V11, V12) and
for O4(V41, V42)(Fig 10). Then, it would try to choose the
best path from the various paths that are possible to tra-
verse the viewpoints(Fig 11.(d)). For this, a DT is built
using the viewpoints as Chance nodes (Fig 10). The re-
wards and utilities are assigned to the nodes accordingly as
specified in section 3.7. From the start(Decision node) it
has to opt to go to any of the four viewpoints. It selects the
control action Ua in Fig 10 to the viewpoint with highest
utility. Once it reaches there, it recognizes the object O4

using 3-D analysis and finds out that it is not object Oa.
From the remaining three control actions, it further selects



Figure 11: Figure depicts two iterations in a run where the robot searches for objects in the environment.
(a,e) Object detection and localization. (b,f)VOP map based viewpoint planning. (c,g)Decision graphs for
optimal control. (d,h)Path traced by the robot during object search.

the next best control Ub to reach V42. In this trial as well,
it fails to recognize O4 as Oa, thus it concludes that O4 is
not Oa. Further, in the DT, it has two control options to
choose, to reach either of V11 or V12. It chooses the control
action Uc to reach V11. Here it successfully recognizes ob-
ject O1 as Oa and terminates the DT. After recognizing O1,
it explores the environment through the closest frontier [13]
based exploration strategy to search the other object Ob.
Incidentally, it finds an object O7 which looks similar to Ob

through GMM (Fig11.(h)). Hence the VOP map of Ob is
laid around O7 to determine the high accuracy viewpoints.
Accordingly a new DT is constructed and the optimal path
is picked. Here it recognizes O7 as Ob as anticipated by the
high GMM probability. And hence, the robot successfully
finds both Oa and Ob in its search mission.

4.5 Comparative analysis signifying utility of
each module

In this section, we analyze the performance gain accrued
as each module is added to the pipeline through an experi-
ment. In the experiment, the robot searches for three objects
namely-a tool box, a multimeter and a shampoo in di↵erent
settings. A comparative evaluation is performed for three
cases: Initially, the robot seeks objects of interest without
any prior knowledge of distant objects. Then, the robot is
equipped with GMMmodule but lacks any kind of viewpoint
planning. Finally, the robot is loaded with both the GMM
module and the VOP based viewpoint planning, integrated
into our DT formulation. After the 3 cases are explained,
we give a quantitative analysis in Fig 13.

4.5.1 Case 1

The robot starts unequipped, without any early inference
module like GMM. It therefore lacks any information about
farther objects and can only plan up to a very short dis-
tance. It explores and examines each object present in range
through a greedy approach by visiting the next closest object
to recognize them. Each object is searched until the queried
object is found. The robot ends up covering a very long dis-
tance due to this ine�cient tour as shown in Fig 12(a) for all
three objects. This ine�ciency is especially pronounced for
the shampoo search (Fig 12(a)). After taking several runs
with various object orientations, we found that the object
recognition accuracy was generally low due to bad viewpoint

Figure 12: (a)Path traced during greedy object
search. (b) Path traced using GMM module with-
out viewpoint planning. (c)Path traced using the
complete pipeline.

selection. In addition, we found the average distance cov-
ered by the robot was very high compared to the other cases.
Over 10 separate runs on shampoo, when the robot landed
on the worst viewpoint, the accuracy dropped as low as 30%.

4.5.2 Case 2

Equipped with the GMM module,the robot is able to rule
out dissimilar objects from a distance. This reduces the
search space to those objects that have a high belief of being
the queried one, as given by the GMM. In this case, we
found that, while the average trajectory length(Fig 13)was
drastically reduced, but the recognition accuracy remained
low. This again is due to poor viewpoint selection. As, can
be seen in Fig 12(b) the path taken to find the shampoo is
drastically reduced.

4.5.3 Case 3

Equipped with both the GMM and VOP module, the
robot’s trajectory length increased by a moderate amount.
However, there was a consistent improvement in accuracy
across the objects. In this case the robot trades o↵ trajec-
tory length for a more optimal viewpoint, explaining our
observations. Fig 12(c) depicts one such run of this case.

The findings from the above cases are summarized in Fig
13. As can be seen in the trajectory length versus object
plot, in case 2 and 3 there is a significant decrease in trajec-
tory length, the largest being for object C(shampoo). Fig



Figure 13: (a) Length traveled by the robot in various experiments in Case I, II, III. (b) Number of times
objects have been found in various trials. (c) Distance traveled by robot in searching various number of
objects.

13(b), the e↵ect of VOP map shows an overall improvement
in the recognition accuracy by 9% as compared to the case
where the robot recognizes objects from random viewpoints.
Analysis in Fig.13(c) show that as the number of queried
objects are increased, the total distance traversed to find
objects increases in nearly linear manner.

5. CONCLUSIONS
In this e↵ort, we presented a complete pipeline, for a robot

to e�ciently search for small objects lying on the floor in
large environments with clutter. To start o↵ with, an initial
search space reduction is done on the basis of texture and
contour cues. Additionally, we improved object recognition
by viewing them from their most discriminative viewpoints.
For this purpose, we used a data-structure, the Viewpoint
object potential(VOP), that led to a higher recognition ac-
curacy. We combine VOP and initial search space reduc-
tion method into a DT that jointly optimizes the trajectory
length and recognition accuracy. Through extensive experi-
mentation, we showed that the robot strongly benefits from
prior knowledge of the objects appearance at a distance, as
well as viewpoint information, while still maintaining low
trajectory lengths.
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