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Abstract

The success of deep learning in computer vision is based on the availability of large annotated datasets. To lower the need
for hand labeled images, virtually rendered 3D worlds have recently gained popularity. Unfortunately, creating realistic 3D
content is challenging on its own and requires significant human effort. In this work, we propose an alternative paradigm
which combines real and synthetic data for learning semantic instance segmentation and object detection models. Exploiting
the fact that not all aspects of the scene are equally important for this task, we propose to augment real-world imagery with
virtual objects of the target category. Capturing real-world images at large scale is easy and cheap, and directly provides
real background appearances without the need for creating complex 3D models of the environment. We present an effi-
cient procedure to augment these images with virtual objects. In contrast to modeling complete 3D environments, our data
augmentation approach requires only a few user interactions in combination with 3D models of the target object category.
Leveraging our approach, we introduce a novel dataset of augmented urban driving scenes with 360 degree images that are
used as environment maps to create realistic lighting and reflections on rendered objects. We analyze the significance of real-
istic object placement by comparing manual placement by humans to automatic methods based on semantic scene analysis.
This allows us to create composite images which exhibit both realistic background appearance as well as a large number of
complex object arrangements. Through an extensive set of experiments, we conclude the right set of parameters to produce
augmented data which can maximally enhance the performance of instance segmentation models. Further, we demonstrate
the utility of the proposed approach on training standard deep models for semantic instance segmentation and object detection
of cars in outdoor driving scenarios. We test the models trained on our augmented data on the KITTI 2015 dataset, which
we have annotated with pixel-accurate ground truth, and on the Cityscapes dataset. Our experiments demonstrate that the
models trained on augmented imagery generalize better than those trained on fully synthetic data or models trained on limited
amounts of annotated real data.
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1 Introduction

In recent years, deep learning has revolutionized the field of
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However, itis well-known that training high capacity mod-
els such as deep neural networks requires huge amounts
of labeled training data. This is particularly problematic
for tasks where annotating even a single image requires
significant human effort, e.g., for semantic or instance seg-
mentation. A common strategy to circumvent the need for
human labels is to train neural networks on synthetic data
obtained from a 3D renderer for which ground truth labels
can be automatically obtained (Shafaei et al. 2016; Richter
et al. 2016; Movshovitz-Attias et al. 2016; Varol et al. 2017;
Zhang et al. 2016a; Ros et al. 2016; Handa et al. 2016; Gaidon
et al. 2016). While photo-realistic rendering engines exist
(Jakob 2010), it is difficult and time-consuming to attain a
level-of-detail comparable to real-world photographs (e.g.,
leaves of trees).

In this paper, we demonstrate that state-of-the-art photo-
realistic rendering can be utilized to augment real-world
images and obtain virtually unlimited amounts of training
data for specific tasks such as semantic instance segmenta-
tion and object detection. Towards this goal, we introduce
a newly augmented dataset called KITTI-360 which con-
tains real images augmented with virtual objects based on
360 degree environment maps and partially annotated with
semantic and instance information. In particular, we augment
the data with realistically rendered car instances. This allows
us to keep the full realism of the background while being
able to generate arbitrary amounts of foreground object con-
figurations.

Figure 1 shows areal image before and after augmentation.
While our rendered objects rival the realism of the input data,
they provide the variations (e.g., pose, shape, appearance)
needed for training deep neural networks for instance aware
semantic segmentation and bounding box detection of cars.
Using those augmented images, we are able to considerably
improve the accuracy of state-of-the-art deep neural networks
trained on real data.

While the level of realism is an important factor when syn-
thesizing new data, there are two other important aspects to
consider - data diversity and human labor. Manually assign-
ing a class or instance label to every pixel in an image is
possible but tedious, requiring up to one hour per image
(Cordts et al. 2016). Thus existing real-world datasets are
limited to a few hundred (Brostow et al. 2009) or thousand
(Cordts et al. 2016) annotated examples, thereby severely
limiting the diversity of the data. In contrast, the creation
of virtual 3D environments allows for arbitrary variations of
the data and virtually infinite number of training samples.
However, the creation of 3D content requires professional
artists and the most realistic 3D models (designed for mod-
ern computer games or movies) are not publicly available
due to the enormous effort involved in creating them. While
Richter et al. (2016) have recently demonstrated how content
from commercial games can be accessed through manipulat-
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ing low-level GPU instructions, legal problems are likely to
arise and often the full flexibility of the data generation pro-
cess is no longer given.

In this work we demonstrate that the creation of an aug-
mented dataset which combines real with synthetic data
requires only moderate human effort while yielding the
variety of data necessary for improving the accuracy of
state-of-the-art instance segmentation network (Multitask
Network Cascades) (Dai et al. 2016) and object detection
network (Faster R-CNN) (Ren et al. 2015). To assess the
performance of networks trained on various datasets, we
annotated the popular KITTI2015 dataset (Menze and Geiger
2015) with semantic and instance labels. We show that a
model trained using our augmented dataset generalizes bet-
ter than models trained on real data or purely synthetic data.
Finally, combining our augmented dataset with a purely syn-
thetic dataset yields a noticeable increase in performance
indicating that augmented and synthetic data can be advanta-
geously combined for training high performance recognition
models. Since our data augmentation approach requires only
minimal manual effort, we believe that it constitutes an
important milestone towards the ultimate task of creating
virtually infinite, diverse and realistic datasets with ground
truth. In summary, our contributions are as follows:

— We propose an efficient solution for augmenting real
images with photo-realistic synthetic object instances
which can be arranged in a flexible manner.

— We provide an in-depth analysis of the importance of var-
ious factors of the data augmentation process, including
the number of augmentations per real image, the realism
of the background and the foreground regions.

— We demonstrate through extensive experiments how aug-
mentation of real images increases the variability in
the data leading to more generalizable models that out-
perform training on real or purely synthetic datasets.
Furthermore, we found that synthetic and augmented
datasets are complementary and combining the two
enhances performance further.

— For conducting the experiments in this paper, we intro-
duce two newly labeled instance segmentation datasets,
named KITTI-15 and KITTI-360, with a total of 400 real
images.

2 Related Work

Due to the scarcity of real-world data for training deep neural
networks, several researchers have proposed to use synthetic
data created with the help of a 3D rendering engine. Indeed,
it was shown in Shafaei et al. (2016), Richter et al. (2016),
Movshovitz-Attias et al. (2016) that deep neural networks
can achieve state-of-the-art results when trained on synthetic
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Real scene (KITTI)

Real scene augmented with synthetic cars (Ours)

Fig.1 Obtaining synthetic training data usually requires building large
virtual worlds (top right) (Gaidon et al. 2016). We propose a new way
to extend datasets by augmenting real training images (top left) with

data and that the accuracy can be further improved by fine
tuning on real data (Richter et al. 2016). Moreover, it was
shown that the realism of synthetic data is important to obtain
good performance (Movshovitz-Attias et al. 2016).

Making use of this observation, several synthetic datasets
have been released which we will briefly review in the follow-
ing. Hattori et al. (2015) presents a scene-specific pedestrian
detector using only synthetic data. Varol et al. (2017) presents
a synthetic dataset of human bodies and use it for human
depth estimation and part segmentation from RGB-images.
In a similar effort, Chen et al. (2016) uses synthetic data
for 3D human pose estimation. In de Souza et al. (2016),
synthetic videos are used for human action recognition with
deep networks. Zhang et al. (2016b) presents a synthetic
dataset for indoor scene understanding. Similarly, Handa
et al. (2016) uses synthetic data to train a depth-based pixel-
wise semantic segmentation method. In Zhang et al. (2016a),
a synthetic dataset for stereo vision is presented which has
been obtained from the UNREAL rendering engine. Zhu
et al. (2016) presents the AI2-THOR framework, a 3D envi-
ronment and physics engine which they leverage to train an
actor-critic model using deep reinforcement learning. Peng
et al. (2015) investigates how missing low-level cues in 3D
CAD models affect the performance of deep CNNs trained
on such models. Stark et al. (2010) uses 3D CAD models for
learning a multi-view object class detector (Kronander et al.
2015)

Synthetic scene (Virtual KITTI)

realistically rendered cars (bottom) keeping the resulting images close
to real while expanding the diversity of training data

In the context of autonomous driving, the SYNTHIA
dataset (Ros et al. 2016) contains a collection of diverse
urban scenes and dense class annotations. Gaidon et al.
(2016) introduces a synthetic video dataset (Virtual KITTI)
which was obtained from the KITTI-dataset (Geiger et al.
2013) alongside with dense class annotations, optical flow
and depth. Suetal. (2015) uses a dataset of rendered 3D mod-
els on random real images for training a CNN on viewpoint
estimation. While all aforementioned methods require labor
intensive 3D models of the environment, we focus on exploit-
ing the synergies of real and synthetic data using augmented
reality. In contrast to purely synthetic datasets, we obtain a
large variety of realistic data in an efficient manner. Further-
more, as evidenced by our experiments, combining real and
synthetic data within the same image results in models with
better generalization performance.

While most works use either real or synthetic data, only
few papers consider the problem of training deep models with
mixed reality. Rozantsev et al. (2015) estimates the parame-
ters of a rendering pipeline from a small set of real images for
training an object detector. Gupta et al. (2016) uses synthetic
data for text detection in images. Pishchulin et al. (2011) uses
synthetic human bodies rendered on random backgrounds for
training a pedestrian detector. Dosovitskiy et al. (2015) ren-
ders flying chairs on top of random Flickr backgrounds to
train a deep neural network for optical flow. Unlike exist-
ing mixed-reality approaches for training data generation
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Fig.2 (Top) The original
image. (Middle) Road
segmentation using (Teichmann
et al. 2016) in red for placing
synthetic cars. (Down) Using
the camera calibration, we
project the ground plane to get a
birdseye view of the scene.
From this view, the annotator
draws lines indicating vacant
trajectories where synthetic cars
can be placed

which are either simplistic, consider single objects or aug-
ment objects in front of random backgrounds, our goal is to
create high fidelity augmentations of complex multi-object
scenes at high resolution. A detailed survey of state-of-the-art
photorealistic mixed-reality techniques is presented in Kro-
nander et al. (2015). In particular, our approach takes the
geometric layout of the scene, environment maps as well
as artifacts stemming from the image capturing device into
account. We experimentally evaluate which of these factors
are important for training good models.

3 Data Augmentation Pipeline

In this section, we describe our approach to data augmenta-
tion through photo-realistic rendering of 3D models on top
of real scenes. To achieve this, three essential components
are required: (i) detailed high quality 3D models of cars, (ii)
a set of 3D locations and poses used to place the car models
in the scene and, (iii) the environment map of the scene that
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can be used to produce realistic reflections and lighting on
the models that matches the scene. We use 28 high quality
3D car models covering 7 categories (SUV, sedan, hatch-
back, station wagon, mini-van, van) obtained from online
model repositories.! The car color is chosen randomly dur-
ing rendering to increase the variety in the data. To achieve
high quality realistic augmentation, it is essential to correctly
place virtual objects in the scene at practically plausible loca-
tions, matching the distribution of poses and occlusions in
the real data. We explored four different location sampling
strategies: (i) Manual car location annotations, (ii) Automatic
road segmentation, (iii) Road plane estimation, (iv) Random
unconstrained location sampling. For (i), we leverage the
homography between the ground plane and the image plane,
transforming the perspective image into a birdseye view of
the scene. Based on this new view, our in-house annotators
marked possible car trajectories on the road where cars can
be placed (Fig. 2). We sample the locations randomly from

! http://www.dmi-3d.net.
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these annotations and set the rotation along the vertical axis
of the car to be aligned with the trajectory set by the user.
For (ii), we use the algorithm proposed by Teichmann et al.
(2016) which segments the image into road and non-road
areas with high accuracy. We back-project those road pix-
els and compute their location on the ground plane to obtain
possible car locations and use a random rotation around the
vertical axis of the vehicle. While this strategy is simpler, it
can lead to visually less realistic augmentations mainly due
to random rotations and unrealistic overlap with neighboring
real objects. For (iii), since we know the intrinsic parame-
ters of the capturing camera and its exact pose, it is possible
to estimate the ground plane in the scene. This reduces the
problem of sampling the pose from 6D to 3D, namely the 2D
position on the ground plane and one rotation angle around
the model’s vertical axis. Finally for (iv), we randomly sam-
ple locations and rotations from an arbitrary distribution. We
empirically found Manual car location annotations to per-
form slightly better than Automatic road segmentation and
on par with road plane estimation as described in Sect. 4.
We use the manual location labeling in all our experiments,
unless stated otherwise.

We leverage the 360 degree panoramas of the environ-
ment from the KITTI-360 dataset (Xie et al. 2016) as
environment map proxies for realistic rendering of cars
in street scenes. These 360 degree images are taken from
the location of the capture vehicle. Thus, they are only an
approximation of the true environment maps expected at
the location of the augmented object. Using the 3D mod-
els, locations and environment maps, we render cars using
the Cycle renderer implemented in Blender Online Com-
munity (2006). Figure 3 illustrates our rendering approach.
However, the renderings obtained from Blender lack typi-
cal artifacts of the image formation process such as motion
blur, lens blur, chromatic aberrations, etc. To better match
the image statistics of the background, we thus design a
post-processing work-flow in Blender’s compositing editor
which applies a sequence of 2D effects and transforma-
tions to simulate those effects, resulting in renderings that
are more visually similar to the background. More specif-

Car models

Rendering

Rendered Image

ically, those operations include (i) independent color shifts
on the RGB channels to simulate chromatic aberrations in
the real lens, (ii) depth-blur operation to match the depth-
of-field of the camera, (iii) radial motion-blur that matches
the blur caused by the moving camera, (iv) color noise and
(v) glow effects to imitate sensor overexposure. Finally, we
use several color curve operations and Gamma transfor-
mations to visually match the color statistics and contrast
of the real data. The parameters of these operations have
been estimated empirically to optimize the visual similarity
between the synthetic and real cars. Some results are shown in
Fig. 4.

4 Evaluation

In this section we show how augmenting driving scenes with
synthetic cars is an effective way to expand a dataset and
increase its quality and variance. In particular, we highlight
two aspects in which data augmentation can improve the real
data performance. First, introducing new synthetic cars in
each image with detailed ground truth labeling makes the
model less likely to over-fit to the small amount of real train-
ing data and exposes it to a large variety of car poses, colors
and models that might not exist or be rare in real images.
Second, our augmented cars introduce realistic occlusions
of real cars which makes the learned model more robust to
occlusions since it is trained to detect the same real car each
time with a different occlusion configuration. This second
aspect also protects the model from over-fitting to the rela-
tively small amount of annotated real car instances.

We study the performance of our data augmentation
method on two challenging vision tasks, instance segmen-
tation and object detection. Using different setups of our
augmentation method, we investigate how the quality and
quantity of augmented data affects the performance of a
state-of-the-art instance segmentation model. In particular,
we explore how the number of augmentations per real image
and number of added synthetic cars affects the quality of
the learned models. We compare our results on both tasks

Location
Sampling

Environment maps

Post-Processing

Augmented Image

Background Image

Fig. 3 Overview of our augmentation pipeline. Given a set of 3D car models, locations and environment maps, we render high quality cars and
overlay them on top of real images. The final post-processing step insures better visual matching between the rendered and real parts of the resulting

image
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(b) The car to the left and in the center are rendered

- < .

I3

(d) The three cars on the road are rendered

Fig.4 Example images produced by our augmentation pipeline

to training on real and fully synthetic data, as well as a
combination of the two (i.e., training on synthetic data and
fine-tuning on real or augmented data). We also experiment
with different aspects of realism such as environment maps,
post-processing and car placement methods.

@ Springer

4.1 Datasets

KITTI-360 For our experiments, we created a new dataset
which contains 200 images chosen from the dataset pre-
sented in Xie et al. (2016). We labeled all car instances at
pixel level using our in-house annotators to create high qual-
ity semantic instance segmentation ground truth. This new
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dataset (KITTI-360) is unique compared to KITTI (Geiger
et al. 2013) or Cityscapes (Cordts et al. 2016) in that each
frame comes with two 180° images taken by two fish-eye
cameras on top of recording platform. Using an equirectan-
gular projection, the two images are warped and combined
to create a full 360° omni-directional image that we use as an
environment map during the rendering process. These envi-
ronment maps are key to creating photo-realistic augmented
images and are used frequently in Virtual Reality and Cin-
ematic special effects applications. The dataset consists of
200 real images which form the basis for augmentation in
all our experiments, i.e., we reuse each image n times with
differently rendered car configurations to obtain an rn-fold
augmented dataset.

VKITTI To compare our augmented images to fully synthetic
data, we use the Virtual KITTI (VKITTI) dataset (Gaidon
et al. 2016) which has been designed as a virtual proxy for
the KITTI 2015 dataset (Menze and Geiger 2015). Thus,
the statistics of VKITTI (e.g., semantic class distribution,
car poses and environment types) closely resembles those
of KITTI-15 which we use as a testbed for evaluation. The
dataset comprises ~12,000 images divided into 5 sequences
with 6 different weather and lighting conditions for each
sequence.

KITTI-15 To demonstrate the advantage of data augmenta-
tion for training robust models, we create a new benchmark
test dataset different from the training set using the pop-
ular KITTT 2015 dataset (Menze and Geiger 2015). More
specifically, we annotated all the 200 publicly available
images of the KITTI 2015 (Menze and Geiger 2015) with
pixel-accurate semantic instance labels using our in-house
annotators. While the statistics of the KITTI-15 dataset are
similar to those of the KITTI-360 dataset, it has been recorded
in a different year and at a different location / suburb. This
allows us to assess performance of instance segmentation and
detection methods trained on the KITTI-360 and VKITTI
dataset.

Cityscapes To further evaluate the generalization perfor-
mance of augmented data, we test our models using the larger
Cityscapes validation dataset (Cordts et al. 2016) which con-
sists of 500 instance mask annotated images. The capturing
setup and data statistics of this dataset is different to those of
KITTI-360, KITTI-15 and VKITTI making it a more chal-
lenging test set.

4.2 Evaluation Protocol
We evaluate the effectiveness of augmented data for training

deep neural networks using two challenging tasks, instance-
level segmentation and bounding-box object detection. In

particular, we focus on the task of car instance segmentation
and detection as those dominate our driving scenes.

Instance segmentation We choose the state-of-the-art
Multi-task Network Cascade (MNC) by Dai et al. (2016)
for instance-aware semantic segmentation. We initialize each
model using the features from the VGG model (Simonyan
and Zisserman 2015) trained on ImageNet and train the
method using variants of real, augmented or synthetic train-
ing data. For each variant, we train the model until con-
vergence and average the result of the best performing 5
snapshots on each test set. We report the standard average
precision metric of an intersection-over-union threshold of
50% (AP50) and 70% (AP70), respectively.

Object detection For bounding-box car detection we adopt
the popular Faster-RCNN (Ren et al. 2015) method. We ini-
tialize the model using the VGG model trained on ImageNet
as well and then train it using the same dataset variants for 10
epochs and average the best performing 3 snapshots on each
test set. For this task, we report the mean average precision
(mAP) metric commonly used in object detection evaluation.

4.3 Augmentation Analysis

We experiment with the two major factors for adding vari-
ation in the augmented data. Those are, (i) the number of
augmentations, i.e the number of augmented images created
from each real image, (ii) the number of synthetic cars ren-
dered in each augmented images.

Figure 5a shows how increasing the number of augmenta-
tions per real image improves the performance of the trained
model through the added diversity of the target class, but
then saturates beyond 20 augmentations. While creating one
augmentation of the real dataset adds a few more synthetic
instances to each real image, it fails to improve the model
performance compared to training on real data only since
the introduced synthetic cars are likely to occlude other real
cars behind them resulting in little gain in diversity. Never-
theless, creating more augmentations results in a larger and
more diverse dataset that performs significantly better on the
real test data. This suggests that the main advantage of our
data augmentation comes from adding realistic diversity to
existing datasets through having several augmented versions
of each real image. In the rest of our experiments, we use 20
augmentations per real unless stated otherwise.

In Fig. 5b we examine the role of the synthetic content of
each augmented image on performance by augmenting the
dataset with various numbers of synthetic cars in each aug-
mented image. At first, adding more synthetic cars improves
the performance by introducing more instances to the training
set. It provides more novel car poses and realistic occlusions
on top of real cars leading to more generalizable models.

@ Springer
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(a) KITTI-15 test (b) KITTI-15 test
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Fig.5 Instance segmentation performance using augmented data. a We fix the number of synthetic cars to 5 per augmentation and vary the number
of augmentations per real image. b We fix the number of augmentations to 20 and vary the maximum number of synthetic cars rendered in each

augmented image

Nevertheless, increasing the number of cars beyond 5 per
image results in a noticeable decrease in performance. Con-
sidering that our augmentation pipeline works by overlaying
rendered cars on top of real images, adding a larger number
of synthetic cars will cover more of the smaller real cars in
the image reducing the ratio of real to synthetic instances
in the dataset. This negative effect soon undercuts the bene-
fit of the diversity provided by the augmentation leading to
decreasing performance. Our conjecture is that the best per-
formance can be achieved using a balanced combination of
real and synthetic data. Unless explicitly mentioned other-
wise, all our experiments were conducting using 5 synthetic
cars per augmented image.

4.4 Comparing Real, Synthetic and Augmented Data

Synthetic data generation for autonomous driving has shown
promising results in the recent years. However, it comes with
several drawbacks:

— The time and effort needed to create a realistic and
detailed 3D world and populate it with agents that can
move and interact.

— The difference in data distribution and pixel-value statis-
tics between the real and virtual data prevents it from
being a direct replacement to real training data. Instead,
it is often used in combination with a two stage training
procedure where the model is first pre-trained on large
amounts of virtual data and then fine tuned on real data
to better match the test data distribution.

Using our data augmentation method we hope to overcome
these two limitations. First, by using real images as back-
ground, we limit the manual effort to modeling high quality
3D cars compared to designing full 3D scenes. A large
variety of 3D cars is available through online 3D model ware-
houses and can be easily customized. Second, by limiting
the modification of the images to the foreground objects and
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compositing them with the real backgrounds, we keep the dif-
ference in appearance and image artifacts at minimum. As
a result, we are able to boost the performance of the model
directly trained on the augmented data without the need for
a two stage pre-training/refinement procedure.

In Fig. 6, we compare models trained on the real KITTI-
360 dataset with 200 images, the synthetic VKITTI dataset
with ~12000 images and the augmented dataset created from
the same 200 real images of KITTI-360, but each now aug-
mented 20 times with different car models and poses yielding
a total of 4000 augmented images. To further compare our
augmented data to fully synthetic data, we train a model
using VKITTI and refine it with the real KITTI-360 training
set. While fine-tuning the model with real data improves the
results from 42.8 to 48.2%, our augmented dataset achieves
a performance of 49.7% in a single step. Additionally, using
our augmented data for fine-tuning the VKITTI trained model
significantly improves the results (51.3%). This demonstrates
that the augmented data is closer in nature to real than to syn-
thetic data. While the flexibility of synthetic data can provide
important variability, it fails to provide the expected boost
over real data due to differences in appearance. On the other
hand, augmented data complements this by providing high
visual similarity to the real data, yet preventing over-fitting.

While virtual data captures the semantics of the real world,
at the low level real and synthetic data statistics can differ
significantly. Thus training with purely synthetic data leads
to biased models that under-perform on real data. Similarly
training or fine-tuning on a limited size dataset of real images
restricts the generalization performance of the model. In con-
trast, the composition of real images and synthetic cars into
a single frame can help the model to learn shared features
between the two data distributions without over-fitting to the
synthetic ones. Note that our augmented dataset alone per-
forms slightly better than the models trained on VKITTI and
fine-tuned on the real dataset only. This demonstrates that
state-of-the-art performance can be obtained without design-
ing complete 3D models of the environment. Figure 7a, b
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Fig. 6 Using our 20-fold augmented KITTI-360 dataset (Aug), we
can achieve better performance on both a the KITTI-15 dataset and
b Cityscapes (Cordts et al. 2016) test set compared to using synthetic
data (VKITTI) or real KITTI-360 data (Real) separately. We also out-

(a) KITTI-15 test
55
[
50
46.6% 47.2%
a 45 432%
P4 41.5%
£
40
35 34.2%
Real VKITTI Aug VKITTI VKITTI
+Real +Aug

Fig.7 Training the Faster RCNN model (Ren et al. 2015) for bounding
box detection on various datasets. Using our augmented dataset we out-
perform the models trained using synthetic data or real data separately
on both a KITTI-15 test set and b Cityscapes (Cordts et al. 2016) test

show similar results achieved for the detection task on both
KITTI-15 and Cityscapes respectively.

4.5 Dataset Size And Variability

The potential usefulness of data augmentations comes mainly
from its ability to realistically expand a relatively small
dataset and train more generalizable models. We analyze
here the impact of dataset size on training using real, syn-
thetic and augmented data. Figure 8a, ¢ show the results
obtained by training on various number of real images with
and without augmentation, respectively. The models trained
on a small real dataset suffer from over-fitting that leads to
low performance, but then slowly improve when adding more
training images. Meanwhile, the augmented datasets reach
good performance even with a small number of real images

969
20 (b) Cityscapes test
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perform models trained on synthetic data and fine-tuned with real data
(VKITTI+Real) while significantly reducing manual effort. Addition-
ally, fine-tuning the model trained on VKITTI using our Augmented
data (VKITTI+Aug) further improves the performance
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set. We also outperform the model trained on VKITTI and fine-tuned
on real data (VKITTI+Real) by using our augmented data to fine tune
the model trained on VKITTI (VKITTI+Aug)

and significantly improve when increasing dataset size out-
performing the full real data by a large margin. This suggests
that our data augmentation can help improve the performance
of not only smaller datasets, but also medium or even larger
ones.

In Fig. 8b, the total size of the augmented dataset is fixed
to 4000 images by adjusting the number of augmentations for
each real dataset size. In this case the number of synthetic car
instances is equal across all variants which only differ in the
number of real backgrounds. The results highlight the crucial
role of the real background diversity in the quality of the
trained models regardless of the number of added synthetic
cars.

Even though fully synthetic data generation methods can
theoretically render an unlimited number of training images,
the performance gain becomes smaller as the dataset grows
larger. We see this effect in Fig. 8d where we train the
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Fig. 8 Instance segmentation performance using real, synthetic and
augmented datasets of various sizes tested on KITTI-15. a We fix
the number of augmentations per image to 20 but vary the number
of real image used for augmentation. This leads to a various size dataset
depending on the number of real images. b We vary the number real

model using various randomly selected subsets of the original
VKITTI dataset. In this case, rendering adding data beyond
4000 images doesn’t improve the model performance.

4.6 Realism and Rendering Quality

Even though our task is mainly concerned with segment-
ing foreground car instances, having a realistic background
is very important for learning good models. Here, we ana-
lyze the effect of realism of the background for our task. In
Fig. 9 we compare models trained on the same foreground
objects consisting of a mix of real and synthetic cars, while
changing the background using the following four variations:
(i) black background, (ii) random Flickr images (Philbin
et al. 2007), (iii) Virtual KITTI images, (iv) real background
images. The results clearly show the important role of the
background imagery and its impact even when using the same
foreground instance. Having the same black background in
all training images leads to over-fitting to the background
and consequently poor performance on the real test data.
Using random Flickr images improves the performance by

@ Springer

images while keeping the resulting augmented dataset size fixed to 4000
images by changing the number of augmentations accordingly. ¢ We
train on various number of real images only. d We train on various
number of VKITTI images

preventing background over-fitting but fails to provide any
meaningful semantic cues for the model. VKITTI images
provide better context for foreground cars improving the
segmentation. Nevertheless, it falls short on performance
because of the appearance difference between the foreground
and background compared to using real backgrounds.
Finally, we take a closer look at the importance of real-
ism in the augmented data. In particular, we focus on three
key aspects of realism that is, accurate reflections, post-
processing and object positioning. Reflections are extremely
important for visual quality when rendering photo-realistic
car models (see Fig. 10) but are they of the same impor-
tance for learning instance-level segmentation? In Fig. 10
we compare augmented data using the true environment map
to that using a random environment map chosen from the
same car driving sequence or using no environment map at
all. The results demonstrate that the choice of environment
map during data augmentation affects the performance of
the instance segmentation model only minimally. This find-
ing means that it’s possible to use our data augmentation
method even on datasets that do not provide spherical views
for the creation of accurate environment map. On the other
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Fig.9 Comparison of performance of models trained on augmented foreground cars (real and synthetic) over different kinds of background

(b) Random env. map
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(a) No env. map
AP50 = 49.1%

(¢) True env. map (d) No postprocessing

Fig. 10 Comparison of the effect of post-processing and environment maps for rendering

hand, comparing the results with and without post-processing
(Fig. 10c, d) reveals the importance of realism in low-level
appearance.

Another important aspect which can bias the distribution
of the augmented dataset is the placement of the synthetic
cars. We experiment with 4 variants: (i) randomly plac-
ing the cars in the 3D scene with random 3D rotation,
(i1) randomly placing the cars on the ground plane with a
random rotation around the up axis, (iii) using semantic seg-
mentation to find road pixels and projecting them onto the
3D ground plane while setting the rotation around the up
axis at random, (iv) using manually annotated tracks from
birdseye views. Figure 11 shows our results. Randomly plac-
ing the cars in 3D performs noticeably worse than placing
them on the ground plane. This is not surprising as cars
can be placed at physically implausible locations, which do
not appear in our validation data. The road segmentation
method tends to place more synthetic cars in the clear road
areas closer to the camera which covers the majority of the
smaller (real) cars in the background leading to slightly worse
results. The other 2 location sampling protocols don’t show
significant differences. This indicates that manual anno-
tations are not necessary for placing the augmented cars
as long as the ground plane and camera parameters are
known.

AP50 = 49.7% AP50 = 43.8%
KITTI-15 test
55
. AP50%
[ APTO%
49.7% 49.5%
50 48.1%
47.3%
45
o
<
40
35 38%- 33.9% % 2.0%
30
Manual Plane Road Random
Labeling Segmentation

Fig. 11 Results using different techniques for sampling car poses

5 Conclusion

In this paper, we have proposed a new paradigm for effi-
ciently enlarging existing datasets using augmented reality.
The realism of our augmented images rivals the realism of
the input data, thereby enabling us to create highly realistic
datasets at a large scale which are suitable for training deep
neural networks. The main limitation of our current model for
data generation is that synthetic objects can only be placed on
top of real images and thus cannot be partially occluded by
real objects. This can be solved by using pixel accurate depth
information if such information is available. In the future we
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plan to reduce the manual effort and improve the realism
of our method by making use of additional labels such as
depth and optical flow or by training a generative adversar-
ial method which allows for further fine-tuning the low-level
image statistics to the distribution of real-world imagery and
makes it possible to expand it to other datasets and tasks.
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