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Abstract— Small obstacles of the order of 0.5 − 3cms and
homogeneous scenes often pose a problem for indoor mobile
robots. These obstacles cannot be clearly distinguished even
with the state of the art depth sensors or laser range finders
using existing vision based algorithms. With the advent of
sophisticated image processing algorithms like SLIC [1] and
LSD [9], it is possible to extract rich information from an image
which led us to develop a novel architecture to detect very
small obstacles on the floor using a monocular camera. This
information is further processed using a Markov Random Field
based graph cut formalism that precisely segments the floor and
detects obstacles which are extremely low. We show robust and
accurate obstacle detection and floor segmentation in diverse
environments over a large variety of objects found indoors.
In our case, low lying obstacles, changing floor patterns and
extremely homogeneous environments are properly classified
which leads to a drastic decrease in the number of obstacles
that may not be classified by existing robotic vision algorithms.

I. INTRODUCTION

Indoor environments often consist of very small obstacles

on the ground making it difficult for robots to navigate. Pro-

liferation of indoor robots has increased the need for optimal

ground segmentation and obstacle detection algorithms for

effective navigation. To perform such tasks effectively, use

of monocular vision systems is on the rise due to various

reasons including low cost, low weight, portability, legacy

of libraries, efficient process times and community support.

Extremely low lying obstacles of the order of 0.5−2cms or

those which are similar to floor appearance hinder the perfor-

mance of existing monocular vision based floor segmentation

or obstacle detection algorithms. Also, recent papers like [2]

state that such low lying obstacles or virtual planes [10] pose

a hindrance to the navigation of humanoids and other indoor

mobile robots.

Current robotic vision algorithms depend either on the

appearance of the floor or on the homography of the floor,

but both of these approaches cannot cater to solve the task of

identifying low-lying obstacles or those which share similar

appearance as the floor. Appearance based floor segmentation

models fail when the floor texture changes or the obstacle

has an extremely similar appearance as the floor (figure 3).

Also, Homography models under perform when obstacles are

of the height of 0.5−2cms which virtually appear to be the

ground plane (figures 3, 4 and 5).

We devise a novel pipeline that discovers and segments

obstacles followed by precise floor segmentation in such dif-

ficult conditions as mentioned above. On careful observation,

it is found that is is desirable to get a rough segmentation
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Fig. 1. (a) Very low lying obstacles of the order of 0.5cms are segmented
out. (b) Low lying obstacles which are highly homogeneous with the floor
are sparsely segmented. (c) The bottom tile on the wall has the same
appearance as floor (homogeneous) that makes it very difficult to segment.
The pillar is segmented out till the bottom precisely.

Fig. 2. (a) Very low lying obstacle of the order of 0.5cms, a battery pack.
(b) Segmented image using our algorithm. (c)The corresponding depth cloud
of the scene using a Kinect. Note that the depth image of the object is non
distinguishable from the background. (d) Depth cloud of the obstacle is
segmented out since we know the precise object boundary.

of the scene into its constituent elements like floor, obstacles

etc. This is achieved by SLIC Superpixelling based on [1]

which would result in division of a given scene along the

edges and contours of the floor and obstacles leading to

numerous superpixels (figure 7). In addition to this, using

Robust Line Segment Detector based on [8] we detect obsta-

cle boundaries in the image that enables discoveries in highly

homogeneous settings. A Markov Random Field based Graph

Cut with the superpixels as its nodes, formulated based on the

homography error of the superpixels and presence of object

boundaries provides for optimal classification of scene into

obstacle and floor areas. This would prove resourceful in

extremely homogeneous environments as in figure 4 and 1(c)

where there is dearth of key points for efficient homography

estimation.

We show results in several challenging scenarios where

there are extremely low lying obstacles as in figure 1(a), (b)

and homogeneous environments like 1(b), (c) where existing

algorithms under perform. In addition to being robust to

changes in floor appearance, our pipeline is clearly able

to segment out a large number of small obstacles like

cups, boxes, small balls, bottles, bottle lids, etc. (Table I

and II), that are commonly found in indoor environments.



Fig. 3. Results when compared to the performance of Homography and
Appearance models. (a) Has a patch that is not detected since it is not
similar to the appearance of surrounding floor. (b) Right most image:
Has a box which is similar in appearance to the floor. (c) Appearance
approach misclassifies a part of floor obstacle due to different appearance.
(d) Appearance model misclassifies the obstacle as floor due to similar
appearance. (e) Homography model classifies the floor even if appearance
changes. (f) Homography model fails when there is a low lying obstacle
on the floor. (g) Our approach segments the floor when there is change
in appearance. (h) Both the low lying obstacles and the floor which has a
different appearance are precisely segmented out.

Obstacles of the height of about 0.5−3cms such as a battery

pack, a very small box, a pen, small ball or a carpet are

distinguished from the floor area. Also, drastic changes in the

floor texture and appearance do not affect the performance

of our algorithm.

It could be difficult for depth sensors such as Laser Range

Finders and Kinect to detect very low lying obstacles based

on depth values alone. This can be seen in the depth image

of 2c where the battery pack is hardly distinguishable from

the background floor. Discovery of such obstacles (figure 2)

helps in precisely segmenting out the depth cloud pertaining

to them for further uses, which is an added advantage of this

algorithm.

II. RELATED WORKS

While obstacle detection shares close ties with segmenta-

tion based systems there are indeed prominent differences.

Traditional appearance based segmentations could assign

different labels to same floor area as appearance changes

while end up giving the same floor label to obstacle regions

due to strong appearance relationships with floor. Figure 3

depicts the two situations. In figure 3(c) appearance based

approaches such as [4] segment the floor area into multiple

parts due to changes in appearance, in figure 3(d), the

algorithms fuse non floor parts into floor due to similarity

in appearance for the image fed from right. Homography

based solutions do alleviate a reasonable part of the above

problem (figure 3(e)) but are not capable of discerning low

lying obstacles (figures 5 and 3(f)).

The problem was first posed in [10] where the author

summarizes the difficulty as virtual plane problem where

homography solutions are not able to discern obstacles of

small heights close to floor. This is depicted in figure 3(f),

wherein homography based solutions are unable to segment

low lying obstacles. The figure also shows the advantages of

the proposed method in figures 4(d), 5(c) and 3(g), (h). Also

figure 6 shows the homography error models for floor and

Fig. 4. (a) A highly homogeneous scene. Dearth of key points for
homography estimators since a part of the floor tile merges into wall and
wall appearance is very similar to floor (b) Vertical line segments detected
pertaining to the pillar help in detecting it as obstacle (section III-C). (c)
Pure homography based result. Considerable part of the wall detected as
floor. (d) Current method discerns the bottom tile on the wall clearly.

Fig. 5. (a) Extremely low lying obstacles of the height 0.5− 3cms (b)
Traditional homography algorithms cannot distinguish them from floor (c)
Result of our algorithm. Low lying obstacles are clearly distinguished.

non floor regions which looks very similar at low heights,

shown by the blue for floor areas and orange for non floor

areas. It can be seen that it is very difficult to detect obstacles

of very low height purely based on homography. There has

been a fair mix of papers that have combined geometry and

vision such as [6], [3], [7]. However these efforts do not

address the problem of segmenting out obstacle regions from

floors and do not show results on very small obstacles.

Specifically [6] combined appearance and homography

cues in a Bayes Filter formulation to detect low lying

obstacles. While effective detection of such obstacles were

obtained, the results were hinged to the assumption that

appearance of floor regions were repetitive while that of the

low obstacles were not. The current formulation does not

make any such assumptions about the appearance of floor and

non floor regions, grounding its efficacy on purely geometric

principles.

Fig. 6. Homography errors at different height are illustrated. Evidently, it is
difficult to detect obstacles of very low height purely based on homography.



III. OUR APPROACH

Our approach stems from the understanding that effec-

tive segmentation is possible by not considering temporal

relations between tracked pixels but also due to relations

that such pixels share with neighbors. Also, it is well known

that graphical models developed over a group of pixels that

share similar properties is computationally more viable than

developing it over individual pixels. These considerations

resulted in the pipeline we propose. What could greatly help

in this regard is to group the image into different constituent

elements which capture local features (figure 7).

The pipeline consists of three principal modules that

enable such robust discoveries. Firstly SLIC superpixelling

[1] is used in a way that the boundary of the superpixel

coincides with the boundary of the small low obstacles. This

enables isolating an area where the homography error terms

appear distinct with respect to surrounding floor regions

despite being at very low height. Figure 1 shows how

homography based error terms combined with a graph cut

provides for robust segmentation of obstacles at 0.5−3cms

height. Such precise contouring of obstacles however is not

possible when the obstacle and floor areas have extremely

similar appearance (figure 4). For this we use state of the

art LSD, the second module to develop error terms based

on line segment features. Finally homography and segment

based error terms are dovetailed into an MRF framework,

the third module to provide for robust discovery of both low

and homogeneous obstacles.
A. Pipeline

(Illustrated graphically in figure 8)
1) The first step of the algorithm is to estimate the ground

plane homography H between two images In and In−1

using the traditional method of detecting key points

and tracking them in two corresponding images (figure

8(a)).

2) Further, image In is subjected to SLIC (figure 8(b))

based on [1] to produce a new image Spn which

contains clusters of pixels called superpixels as seen

in figure 7. The boundaries of these superpixels are

generally aligned to those of the obstacles present in

the image. Also, it is observed that small obstacles

would be clustered in a single superpixel or into two

ocassionally. A homogeneous environment would pro-

duce regular superpixels over the space (handled in the

next point). III-B describes the role of superpixelling

module in a detailed manner.

3) The same image In is subjected to Line Segment Detec-

tion(LSD) (figure 8(c)) based on [9] which would lead

to detection of numerous line segments that constitute

the scene (figure 8(e)). In all of these, the lines that

are corresponding to the obstacles are of importance

and are filtered as explained in section III-C. Now

we have an image Lsn (ex: figure 9(d)) which would

consist of line segments pertaining to obstacles at

various positions. The implications of using LSD and

the process of selection of particular lines pertaining

to objects is clearly detailed in III-C.

Fig. 7. (a) Extremely low lying obstacles. (b) Points corresponding to a
single object clustered into either a single superpixel or a maximum of two.

4) A Markov Random field is formulated with its nodes

as the superpixels previously obtained. The energy

of a node is determined by two factors. One is the

homography error averaged over all the feature tracks

within the superpixel Spn (figure 8(d)), the other is the

presence and deviation of an obstacle line in the Lsn

at the corresponding position of the superpixel Sp in

Spn. The combined energy of the MRF is minimized

using Graph Cut using the standard implementation by

Kolmogorov [5] subject to fulfilling the sub modularity

criteria. And hence we label each of the superpixels in

Spn either as floor or as an obstacle as seen in figure

1(a), (b).

B. Superpixelling

Superpixelling using SLIC [1] can decompose an image

into small clusters and the separation takes place at the

boundaries of the constituent elements as seen in figure

7, 8(e). It is observed that pixels corresponding to small

obstacles are clustered into a single superpixel which might

ocassionally extend to two. Since we are formulating an MRF

over the superpixels, we can use the consolidated homogra-

phy error over all the tracked pixels of the superpixel (figure

8(d)) and use it in an efficient way for a graph cut which

other wise will not prove fruitful in case only the pixels are

considered. However SLIC superpixelling has a shortcoming.

In case of extremely homogeneous environments, there are

no clear boundaries among the floor and non floor regions.

In such a case SLIC would produce regular, homogeneous

superpixels which would not cater the need here. Section

III-C tackles such issues.

C. Detection of line segments of obstacles

Extremely homogeneous environments (figure 4) deprive

the homography estimators of key points which means an

accurate homography for the floor cannot be calculated. We

use LSD based on [9] which completely breaks down the

image In into its numerous constituent line segments (figure

8(e)) . Even in extremely homogeneous environments, we

observe that LSD clearly detects the line segments pertaining

to obstacles. But added to these, there are other lines that

are present. Obstacle lines that are near vertical as seen

in figure 9(c) can be clearly detected. This is done by a

two stage filtering. In the first stage, we eliminate all the

lines that are not near vertical using a threshold of the

angle they make with the horizontal. This leaves us with



Fig. 8. The algorithm pipeline is illustrated.

Fig. 9. (a) A homogeneous scene where the step is the of the same color as the floor is. Hence it is difficult for traditional algorithms to segment it
out. (b) Lines pertaining to different obstacles (the step, pillar beside, etc.) are detected. (c) Near vertical lines are selected for further stages. All the lines
which are not near vertical will be dropped. As it can be seen, all the lines of the floor are dropped. (d) A warp of the scene is computed such that a view
from the top is obtained. Lines pertaining to the obstacle, in this case the step have a substantial deviation from the vertical, after the warp. These add
potential to the corresponding superpixels. (e) The whole step is clearly segmented out by our algorithm.

an image I′n (figure 9(c)) with two kinds of lines. Obstacles

lines which are vertical and floor lines of the similar kind.

A warp of I′n is considered in top view. An obstacle line

would show significant deviation from the vertical line in

the top view. While typically a floor line that appeared

vertical in the perspective view would retain its verticality

in the top down view. This holds as long as the camera

only yaws but does not pitch or roll. For indoor planar

environments this is an obvious situation (figure 9(d)). This

warped image is further filtered for lines which have such

substantial deviation. In the end, we get lines which are

of the obstacles. So even in case of homogeneous scenes,

we are able to extract information regarding the obstacles

through lines if not through superpixelling and homography.

We use these lines to serve in determining the energy of

the corresponding superpixel in Spn. The presence of an

obstacles vertical line in an area would accordingly increase

the energy of the corresponding superpixel and hence the

corresponding node in MRF. Figure 4(b) has lines pertaining

to the pillar which is an obstacle. The lines contribute to

the energy of the corresponding super pixels in Spn and

hence act as subtle discriminators in case of homogeneous

environments. There might be cases where the lines on floor

might seep in at the end as well but because the floor

homography is satisfied by them, they would be classified

as floor finally.

D. Homography : Bootstrapping and further stages

The first initial estimate of the homography between I2 and

I1 is done by a bootstrap process. A trapezoidal area on the

floor which does not constitute an obstacle is selected and

the homography is estimated. It is expected that clear floor

is available for homography estimation in the boot strapping

process. After the pipeline produces a segmented image of

I2 we have the actual floor area and hence we would be able

to compute the floor homography between I2 and I3. This

homography would be used to process I3. And hence the

frames In−1 and In are used to compute the floor homography

which would be used to process In.

E. The Markov Random Field Model

A Markov Random Field (MRF) is an undirected prob-

abilistic graphical model to encode conditional dependen-

cies among random variables. We pose our problem of

segmenting small obstacles and floor in image in an MRF

framework, and define an energy (cost) function such that its

minimum corresponds to the target segmented image. In this

framework, we represent superpixels of image as nodes in a

Markov Random Field and associate a unary and pairwise

cost of labeling these superpixels. We then solve the problem

in an energy minimization framework where an MRF energy

function ψ of following form is defined:

ψ(x,θ ,ξ ) = ∑
i

ψi(xi,θi,ξH)+ ∑
(i, j)∈N

ψi j(xi,x j,ξH). (1)

In Equation 1 ψi(·) represents unary term associated with

ith super-pixel and ψi j(·, ·) represent the smoothness term de-



fined over neighborhood system N . Here x = {x1,x2, ...,xn}
is the set of random variables corresponding to superpixels

of image. Each of these random variables xi takes a label xi

ε [0, 1] based on whether it is a floor or obstacle.

Each super-pixel is checked for vertical lines pertaining to

the obstacle. If the vertical line is found in super-pixel, the

change in angle with vertical axis by that edge in warped

image is computed. For the ith super-pixel this angle is

denoted as θi. If a super-pixel does not contain a vertical edge

then its contribution to the unary term of 2 becomes zero. If

ξH is the homography error associated with the super-pixel,

then the unary term can be defined as,

ψi(xi,θi,ξH) = (ξ 2
H +λ1.θi).x̄i +(ξ 2

H).xi (2)

Here ξH is the average homography error in associated

with each of the super-pixel using KLT feature detector and

optical flow. λ1 is a constant. For smoothness term we use

Potts model, defined as follows,

ψi j(x,ξH) = λ2. ∑
(i, j)εN

(ξHi −ξH j)
2
, i f xi 6= x j. (3)

where λ2 determines the degree of smoothness. The

smoothness term is added only if the neighbouring superpixel

has a different label. Once unary and pairwise terms are

defined, problem of segmenting small obstacles and floor is

now to find the global minima of the energy function defined

in Equation 1, i.e.,

x∗= argminxψ(x,θ ,ξ ) (4)

The global minima of this energy function can be ef-

ficiently computed by graph cut. For this we construct a

weighted graph G = (V,E) where each vertex corresponds

to an image super-pixel, and edges link adjacent superpixels.

Two additional special vertices source (S) and target (T ) are

added to the graph. We then connect all the other vertices to

them with weighted edges. The weights of edges are defined

using definitions of unary and pairwise terms. The min cut

of this graph corresponds to the global minima of the energy

function. We use publicly available efficient implementation

by Kolmogorov and Zabih et al. [5] for finding min cut of

this graph.

IV. RESULTS

This section outlines the results when the algorithm has

been put to test under various challenging scenarios. In all

of the cases, the algorithm reliably detects and segments out

the floor, demonstrating its robustness and adaptability. The

challenges include the presence of small low lying obstacles,

homogeneous floor and non floor regions, highly textured

floor. Also, apart from different kinds of floor patterns, our

method also faithfully segments out obstacles that are not

necessarily manhattan in nature. These obstacles include a

ball, a bottle, an amigo bot etc. A vast range of indoor

objects having various shapes and sizes can be efficiently

detected. These include small battery packs, low lying boxes,

books, balls, marker pens etc. Following is the summary of

the performance in various circumstances.

Fig. 10. (a) A general situation where obstacles of considerable height are
present. The pipeline faithfully segments out the obstacles. (b) The height
of the obstacles is now decreased. Small balls and boxes are segmented out.

A. Small low lying obstacle detection

Extremely low lying obstacles can pose serious problems

for indoor robots. Obstacles in indoor environments exist

in different shapes, sizes and textures. While an obstacle

may be homogeneous to the floor which would not be

detected by appearance models, another may be a very

low lying one which blindfolds homography models. This

section summarizes the results where various kinds of such

obstacles are precisely segmented. Essentially, since the

obstacles come up in one or two superpixels, the homography

error over the superpixel is consolidated over the whole

superpixel which is a node in the MRF. And hence the graph

cut makes a clear distinction between the obstacle and the

floor. We show promising results in various scenarios where

obstacles of different kinds are detected precisely. Table I

shows the heights and related figures of different obstacles

that are detected and the corresponding images. As we pass

on to subsequent images, height and size of the obstacles

keeps decreasing, making it more and more complex for the

algorithm and yet, the pipeline performs faithfully.

TABLE I

HEIGHTS AND DISTANCES(FROM CAMERA) OF OBSTACLES

Object/Obstacle Height(cm) Distance(m) Figure

Pen 0.6 1.4 14(a)-(a1)

Pepper Mint Box 0.7 1.6 13(a)-(a2)

Transistor Battery Pack 1.5 1.65 13(a)-(a1)

Multimeter 1.8 1.6 12(b)-(b1)

Laptop Battery Pack 1.8 1.63 12(b)-(b2)

Wooden Plank 2 4 11(a)

Water Color Bottle 3 1.2 13(a)-(a3)

Mosquito Repellant Case 3.5 1.3 figure 13(a)(a4)

A ball 6 2.2 10(b)

B. Extremely homogeneous obstacles

As discussed earlier, when extremely homogeneous ob-

stacles are present, it is generally difficult to make a good

estimate of homography. In such a case if there are vertical

lines present on the obstacle, they would rescue the per-

formance of the algorithm. In figure 15(c), it can be seen

that normal homographic methods or appearance methods



Fig. 11. (a) A plank of height 2cms is segmented out. Multiple superpixels
are formed over the edge of the plank and each of them which form a node,
combine the homography error of the points in them. (b) A guitar fret is
precisely segmented.

Fig. 12. (a) Low lying obstacles. (b) Points corresponding to a single
object clustered into either a single superpixel or a maximum of two.

would fail in such a case where the floor appears to merge

into the pillar. In such a situation, the vertical lines present

on the pillar, that are detected by LSD would add potential

to the energy of the corresponding superpixel in Spn and

hence they are clearly distinguishable. Also figure 16 shows

that the step which is homogeneous as well as low lying

is clearly segmented by our algorithm. This is because of

the line segments that are detected on the step, which add

potential to the corresponding superpixel node. What could

be a potential threat to robots in such case is easily handled

by our pipeline. We are also able to segment out low lying

homogeneous obstacles on the floor faithfully (figure 13(b),

(d)). This could be a tough job for traditional homography

or appearance based approaches. Table II gives the height of

the homogeneous obstacles and their images.

TABLE II

HEIGHTS AND DISTACES(FROM CAMERA) OF HOMOGENEOUS

OBSTACLES

Object/Obstacle Height(cm) Distance(m) Figure

Remote Control 0.8 1.2 13(b)-(b2)

A Notebook 1.5 1.15 14(b)-(b2)

Business Card Box 2 1.5 13(b)-(b6)

Small Wheel 2 1.15 13(b)-(b5)

Duster 3 1.4 13(b)-(b3)

A mesh of wire 3 1.4 13(b)-(b1)

C. Change in texture
Often it so happens that the texture of the floor that

the robot is traversing on keeps changing. In this case the

algorithm must be robust enough to sustain any changes in

Fig. 13. (a) Objects like battery pack(a1), a peppermint box(a2), water color
box(a3), mosquito repellant(a4) are accurately segmented. (b) Extremely low
lying homogeneous objects are segmented.

Fig. 14. (a) A pen is precisely classified as an object (b) A notebook which
is very low lying is classified as object.

Fig. 15. (a) Bottom tile of the pillar is same as floor. (b) Vertical line
segments detected pertaining to the pillar help in detecting it as obstacle as
described in section III-C. (c) Pure homography based result. Considerable
part of the wall detected as floor. (d) Our method clearly discerns the lower
part of the pillar where a tile similar to the obstacles is present.



Fig. 16. (a) A scene where the step appears to be same as the floor and
is low lying as well. (b) The step is clearly detected. The floor beyond the
step is classified as floor which is expected.

Fig. 17. (a) A visible change in floor texture can be seen. (b) While the
floor appearance changes, obstacles are segmented out.

the floor texture. Figures 17 and 18 show that the algorithm

can efficiently perform even in cases where the floor texture

is changing. Also, in figure 18 it can be seen that there

are numerous lines detected in the floor due to the LSD.

It might appear that the lines might deceive the algorithm

of being associated with obstacle. But this does not happen

since all of them are filtered off as specified in III-C, figure

9. In a case where there is a line segment which seeps in

after all the process, the superpixel Sp which belongs to the

floor would have negligible homography error. And hence a

meager potential addition by the line in such a case would not

make a difference (Figure 18). We present an interesting case

of a 3D painting (figure 19) which generally deceives the

human eye as though obstacles are present in the scene. Here

the buildings in the front are actually drawings on the floor

giving an illusion of standing on the floor. These need to be

detected as floor while people behind ought to be classified

as obstacles. Also, numerous number of line segments that

pertain to the apparent obstacles in the painting might as

well deceive the algorithm. But this does not happen. As

mentioned earlier, the superpixels satisfy the homography in

a clear manner and hence the potential that the lines add to

the floor would not affect the performance. This we believe

is a convincing case for our algorithm in that it is not in any

ways confused by the deceiving segments.

D. Depth map segmentation : Consequent application

Laser Range Finders or RGB-Depth cameras like Kinect

provide us with the depth data of the scene. In such a point

cloud, small obstacles of 0.5− 3cms in height would pose

difficulty in segmenting out the depth points corresponding

to them. Our algorithm provides for precise segmentation of

the point cloud of such small obstacles. Since we have an

accurate segmentation of small objects in the scene, we can

select the corresponding area in the depth cloud of the scene

Fig. 18. A Highly textured floor is presented to the pipeline. Despite
change in floor texture, the algorithm clearly segments out the floor. The
lower part of the LSD image presents a lot of lines in various orientations.
Despite their presence, the algorithm segments out the floor faithfully.

Fig. 19. (a) A 3D painting which could be deceptive to the human eye.
The buildings in the front are drawings on the floor and not obstacles. Also
since all of it is on the plane, it should segment out the painting as floor.
(b) Numerous line segments, some of which are vertical on the floor might
deceive the algorithm that there is an object there. But since the superpixels
corresponding to those areas satisfy the homography, the potential of that
superpixel node in MRF is quite low. Thus presence of vertical lines on the
floor would not degrade the performance of the pipeline. (c) The whole of
the floor is classified faithfully as expected.

to obtain the depth details of the object. Figure 20 shows the

result.

E. Discussion on results

Throughout the results, we demonstrated the performance

of our pipeline over various conditions. It can be seen

that efficient and precise segmentation of small obstacles

is achieved. Thus, this methods provides for effective nav-

igation in indoor environments using a monocular camera

while there are numerous small obstacles present. Below,

we present a discussion on how different modules contribute

to the efficacy of the pipeline.
1) Superpixelling: As discussed earlier (III-B), superpix-

elling segments out the whole image into its constituent

elements along their borders. And hence, small obsta-

cles pop out as single superpixels and occasionally into

two. Since we have the obstacles in superpixels, con-

sidering the overall homography error of a superpixel

using its constituent tracked pixels substantially helps

in precisely segmenting the obstacle using the MRF-



Fig. 20. (a) Very low lying obstacles: a ball, a battery pack. (b) Segmented
image using our algorithm. (c)The corresponding depth cloud of the scene
using a Kinect. (d) Depth cloud of the obstacle is segmented out since we
know the precise object boundary.

Fig. 21. (a) The pipe, across the image and the the base of the chair are
low lying and long. (b) Long obstacles are clearly segmented out.

Graph Cut formulation. In such cases, the obstacle is

clearly segmented out despite the presence of a vertical

line on them. The role of a line is discussed below.

2) Lines and detected line segments : In any given case,

there are numerous line segments present in a given

scene. Every node of the Markov Random Field is built

by the potential contributed by homography error of

the superpixel and the presence of a line. But the line

essentially contributes in cases where there is extreme

homogeneity. Homogeneous cases as seen in figure 15

and 16 pose problems in estimating the homography

due dearth of key points. It can be seen that the floor

apparently merges into the pillar (figure 15) and the

step (figure 16). In such cases the vertical line segments

of obstacles that are detected (described in III-C) in the

scene come to the rescue. Line segments detected in

section III-C (figure 9) add potential to the correspond-

ing superpixel node and hence a clear distinction can

be made in the Graph Cut process. It might some times

appear that the lines present on the floor could deceive

the algorithm of being associated with an obstacle. But

the strict two stage filtering described in III-C helps in

selecting only the vertical and near vertical lines of

obstacles. If in case there is a floor line which seeps

in through both the filters, the homography error of the

superpixel of that corresponding line is extremely low,

and hence it would be labeled as floor by the Graph

Cut process. This can be seen in figures 18 and 19.

3) Further, there could be cases where the whole envi-

ronment is so homogeneous that the Line Segment

Detector is not able to detect near vertical lines of

the obstacles. Such cases we believe are very rare and

there are no current algorithms which cater to such

problems.

4) Long Obstacles and Rotation: When an obstacle is long

all of it is not in a single superpixel. However since

the contours of superpixels on the obstacle coincide

with the it, homography error terms provide sufficient

potential for object discovery (figure 21). If rotations

are abrupt, trackers tend to provide wrong correspon-

dences. A wrong homography estimate can produce

less than optimal performance. However if the rotation

is smooth and not abrupt, the algorithm continues to

do the needful.

V. CONCLUSIONS

The paper presents an efficient algorithm for segmenting

out low lying obstacles of the order 0.5− 3cms in height

just by using a monocular commodity camera. In addition,

extremely homogeneous environments where the obstacles

appear to merge with the floor are dealt in an efficient

manner. Consequently, this paper leads to a drastic increase

in the kind of obstacles that can be detected by present

obstacle detection and floor segmentation algorithms. In a

homogeneous environment, a robot might ram into a non

floor region (figure 16(b)) in case the pillar is not segmented

out properly. Also, a humanoid might topple in case there

are small obstacles lying on the floor (figure 13). This

paper alleviates such issues and a considerable number of

problems that are generally faced by current algorithms.

Apart from the issues it addresses, the pipeline could be used

for further applications to precisely collect the point cloud

data, better navigation and path planning, etc. To the best

of our knowledge there has not been a paper catered to this

problem that shows similar results of such small and diverse

obstacle discoveries.
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