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Abstract
Neural rendering techniques promise efficient photo-

realistic image synthesis while providing rich control over
scene parameters by learning the physical image formation
process. While several supervised methods have been pro-
posed for this task, acquiring a dataset of images with ac-
curately aligned 3D models is very difficult. The main con-
tribution of this work is to lift this restriction by training
a neural rendering algorithm from unpaired data. We pro-
pose an autoencoder for joint generation of realistic images
from synthetic 3D models while simultaneously decompos-
ing real images into their intrinsic shape and appearance
properties. In contrast to a traditional graphics pipeline,
our approach does not require to specify all scene prop-
erties, such as material parameters and lighting by hand.
Instead, we learn photo-realistic deferred rendering from a
small set of 3D models and a larger set of unaligned real im-
ages, both of which are easy to acquire in practice. Simulta-
neously, we obtain accurate intrinsic decompositions of real
images while not requiring paired ground truth. Our exper-
iments confirm that a joint treatment of rendering and de-
composition is indeed beneficial and that our approach out-
performs state-of-the-art image-to-image translation base-
lines both qualitatively and quantitatively.

1. Introduction
State-of-the-art sampling-based rendering engines (e.g.,

Mitsuba[20]) are able to generate photo-realistic images of

virtual objects which are nearly indistinguishable from real-

world photographs. However, this is not an easy task to

accomplish since all intrinsic physical aspects of the vir-

tual object must be accurately modeled, such as accurate 3D

geometry, detailed textures and physically-based materials.

While some of these intrinsics are abundant on the inter-

net, such as the geometry of 3D objects (e.g. Turbosquid

and 3D Warehouse), others are hard to obtain, such as high-

quality materials – ideally in the form of a highly-accurate

spatially-varying BRDF. In addition, sophisticated and slow

rendering algorithms with many tunable parameters (light-

ing, environment map, camera model, post-processing) are

Figure 1: Deferred Neural Rendering and Intrinsic Im-
age Decomposition. At training time, our model exploits

normals, albedo and reflections from a small set of 3D mod-

els as well as a large set of unpaired RGB images of the

same object category. Our model solves two tasks simulta-

neously: (i) generating photo-realistic images given the in-

put geometry and basic intrinsic properties, and (ii) decom-

posing real images back into their intrinsic components.

required for turning 3D content into photo-realistic images.

These parameters are often tuned individually with each

rendered image, making it hard to create a large and diverse

set of rendered images. On the other hand, obtaining a large

number of real images which capture the complex interac-

tion of light with scene geometry and surface properties is

easy. This makes the idea of learning neural image synthe-

sis from real images very attractive.

Several works on conditional image generation [36,

41, 19, 9] have exploited paired datasets of real images

with semantic information, including semantic segmenta-

tion [36, 9] and body part labels [26] for training realistic

image synthesis models. However, such sparse inputs only

allow limited control over the generated image. This lim-

its the applicability of these methods, e.g., in virtual real-

ity or video game simulations where precise control over

the output is essential. Training a conditional image gen-

eration model from richer control inputs would require a

large dataset of paired real images with pixel aligned intrin-
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sic properties such as 3D structure, textures, materials and

reflections. Obtaining such a dataset is hard in practice.

Our goal is to take a step towards learning a highly con-

trollable realistic image synthesis model without requiring

real world images with aligned 3D models. Our key insight

is that learning the inverse task of intrinsic decomposition

is helpful for learning image synthesis from real images

and vice-versa. We therefore train both, the forward ren-

dering process and the reverse intrinsic decomposition pro-

cess, jointly using a single objective as illustrated in Fig. 1.

Inspired by recent results in unpaired image-to-image trans-

lation [17, 29, 46], we train our model using an small set of

synthetic 3D models of an object category as well as a large

unpaired dataset of real images of the same category.

Towards this goal, we exploit a technique from real-time

rendering called Deferred Rendering which splits the ren-

dering process into two stages and thus improves efficiency.

In the first stage, the geometry of the scene along with its

textures and material properties are projected onto a 2D

pixel grid, resulting in a set of 2D intrinsic images which

capture the geometry and appearance of the object. This

step is efficient since it does not require physically accurate

path tracing but relies on simple rendering operations. In

the second “deferred” stage, lighting, shading and textural

details are added to form the final rendered image. Our goal

is to replace this second deferred stage of the rendering pro-

cess with a neural network which we call Deferred Neural
Rendering (DNR) network. To ensure that the input infor-

mation is represented in the output image, we decompose

it back into its intrinsics using a second Intrisic Image De-

composition (IID) network. However, we found that using

this cycle alone leads to overfitting, especially in the IID

network. To improve the IID network, we introduce a sec-

ond Decomposition cycle in which we train the IID network

to decompose real images.

Overall, our model follows a similar dual cycle training

setup as proposed in [46] and [44]. However, an important

conceptual difference to these works is that our task is not a

one-to-one but a one-to-many mapping. Different realistic

images can be generated from the same set of intrinsic maps

as the intrinsics do not uniquely define the image. Likewise,

a single image can be explained using different intrinsic de-

compositions due to projection from the higher dimensional

intrinsics into the RGB image space.

We therefore introduce a shared adversarial discrimina-

tor between the input and the reconstruction at the end of

each cycle. Our model enables both highly photo-realistic

image synthesis and accurate intrinsic image decomposi-

tion. We summarize our main contributions as follows:

• We propose the Intrinsic Autoencoder, a method to

jointly train photo-realistic image synthesis and in-

trinsic image decomposition using cycle consistency

losses without using any paired data.

• We propose a shared discriminator network that en-

ables better generalization and proves key for learning

both tasks without paired training data.

• We analyze the importance of various model compo-

nents using quantitative metrics and human experi-

ments. We also show that our method recovers accu-

rate intrinsic maps from challenging real images.

2. Related Work
Differentiable Rendering. A standard way of synthesiz-

ing images from a given geometry and material is to use

rendering engines. Several works try to implement the ren-

dering process in a differentiable manner, amenable to neu-

ral networks. The work of [5] used differentiable rendering

with deformable face models for face reconstruction. The

works of [31] and [22] proposed rasterization-based differ-

entiable renderers but only support local illumination. In

order to support more realistic image formation, some other

works [8, 12, 13, 27] propose to back-propagate though path

tracing. Differentiable rasterizers are relatively fast, but at

the same time highly restrictive as they do not support com-

plex global illumination. While differentiable path tracers

produce more realistic images, they are usually quite slow,

thus restricting their usage to specific applications. Another

drawback of differentiable renderers is that they require a

detailed representation of the rendering input in terms of ge-

ometry, illumination, materials and viewpoint. In this work,

we bypass the specification of complex image formation by

training a CNN to directly generate realistic images from

given geometry and material inputs.
Neural Image Synthesis. Generative models such as Gen-

erative Adversarial Networks [14] and Variational Auto-

Encoders (VAE) [24] are widely use to synthesize realis-

tic images from a latent code. In contrast, our goal is to

perform conditional image synthesis which allows more

fine-grained control over the image generation process.

Some popular conditional image generation approaches are

label-to-image translation [35, 34], image-to-image trans-

lation [19, 11, 9, 46, 29, 41] and text-to-image genera-

tion [38, 45, 16, 42]. Earlier works [19, 11, 9] on con-

ditional image-to-image generation are mostly supervised

with paired data from both domains. Several works [46, 29]

propose a way to use unpaired data from both domains for

conditional image generation. Other advances in condi-

tional image generation include innovations in network ar-

chitectures and loss functions for generating high resolution

images [41] and generating multiple diverse images [10, 17,

43, 18]. In this work, we develop a model for photo-realistic

geometry-to-image translation using only unpaired training

data as supervision. Our work is closely related to [1] which

also considers geometry-to-image translation, but requires

paired training data. Our work belongs to the family of un-
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paired conditional image generation models with architec-

ture and losses (e.g., shared discriminator) specialized for

the geometry-to-image translation. Our model outperforms

state-of-the-art unpaired image-to-image translation models

[46, 17] by a large margin.

Intrinsic Image Decomposition is a long standing prob-

lem in computer vision. [3] poses the task as an optimiza-

tion problem with a set of hand-crafted priors for shape,

shading albedo etc. On the other hand supervised methods

like [40, 21, 39] use synthetic data to train the model fol-

lowed by refinement on real images. However, synthetic

data might not capture all the real world statistics and mod-

els trained with synthetic data might now generalize well

to real images. Recently, several self-supervised intrinsic

decomposition methods have been proposed [28, 32, 30].

[30] uses single images during both training and inference

stages. [28, 32] make use of multiview images or video

sequences of the scene during training and infer on a sin-

gle image . Our work falls in the realm of self-supervised

intrinsic image decomposition. We do not use any paired

synthetic data or multiview sequences to train out model.

Instead, we rely on jointly training models for neural ren-

dering and image decomposition.

3. Method

Our Intrinsic Autoencoder model (Fig. 2) consists of two

generator networks R and H for Deferred Neural Render-

ing and Intrinsic Image Decomposition, respectively. The

Deferred Neural Rendering Network R : M → Î takes

as input a set of intrinsic maps M = {A,N, F}. The ob-

ject’s surface normal vectors in the view coordinate system

N ∈ R
H×W×3 provides the Deferred Neural Rendering

Network important information about the local shape of the

object which is necessary for creating shading and reflec-

tion in the output image. The albedo A ∈ R
H×W×3 is a

pixel-wise RGB value that describes the material or texture

color at every pixel, ignoring any lighting effects. Finally,

the environment reflections F ∈ R
H×W×3 are computed by

projecting a high dynamic range environment map onto the

3D model. Note that this simple projection operation does

not involve any complicated sampling or ray-tracing oper-

ations. As shown in our experiments, the Deferred Neural

Renderer can also be trained with a subset of those inputs

since it is able to compensate for the missing information.

The DNR network R : M → Î transforms all the input in-

trinsics M into a realistic image Î ∈ R
H×W×3 that corre-

sponds to the input intrinsics. Similarly, the Intrinsic Image

Decomposition (IID) network H : I → M̂ performs the

opposite task by taking an input image I and predicting its

intrinsics M̂ ∈ R
H×W×9.

Supervised training ofR andH on real data is typically dif-

ficult due to the lack of real training image and intrinsics

pairs (Ir,Mr). Instead, we use a combination of cycle-

consistency losses and adversarial losses that require no

paired training examples. This allows us to leverage a large

dataset of real images {Iir}ni=0 and an unpaired set of syn-

thetically generated intrinsic maps {M i
s}mi=0. In the follow-

ing, we detail our cycle consistency losses and the novel

shared adversarial losses.

3.1. Cycle Consistency
Rendering Cycle. The goal of the rendering cycle is to

train R in order to produce realistic images Îs = R(Ms)
from synthetic intrinsic maps Ms. To trainRwithout paired

data, we use the inverse transformation H which decom-

poses the predicted image Îs back into its intrinsic maps

M̂s = H(R(Ms)) as illustrated in Fig. 2. We encourage

consistency of the intrinsics using the rendering cycle con-

sistency loss which is defined as the Smooth-L1 distance

between the input and reconstructed intrinsics

Lren(R,H,Ms) = ‖H(R(Ms))−Ms‖1. (1)

Decomposition Cycle. Similarly, we train H to generate

intrinsic maps M̂r = H(Ir) from real images Ir. To ensure

consistency with the input Ir, the output intrinsics M̂r are

passed to the deferred neural renderer R to reconstruct the

image Îr = R(H(Ir)). The decomposition cycle consis-

tency loss is defined by:

Ldec(R,H, Ir) = ‖R(H(Ir))− Ir‖1. (2)

The combined cycle consistency loss is then defined as:

Lcyc(R,H, Ir,Ms) = Lren(R,H,Ms) + Ldec(R,H, Ir)
(3)

To ensure that the predicted normals N̂s = HN (Ir) and the

reconstructed real normals N̂r = HN (R(Ms)) are prop-

erly normalized, we exploit an additional normalization loss

Lnorm:

Lnorm(R,H, I) =| 1−‖HN (Ir)‖2 | + | 1−‖HN (R(Ms))‖2 |

3.2. Shared Adversarial Loss
While the cycle consistency loss ensures that the network

input can be reconstructed from its output, it doesn’t place

any importance on the realism of that output. Additionally,

the cycle consistency loss assumes a one-to-one determin-

istic mapping between the input and output. While this is

a reasonable condition for some image-to-image translation

tasks [46], it is violated when translating between images

and their intrinsic properties. Decomposing an RGB im-

age into its high-dimensional intrinsic properties is a one-

to-many transformation since multiple decompositions can

be consistent at the same time with the same image, e.g.,

a gray patch may correspond to a gray diffuse surface or

a black glossy surface with specular highlight. Likewise,

the process of creating an image from an incomplete set
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Figure 2: Intrinsic Autoencoder. Our model comprises two cycles: The first cycle (blue) auto-encodes a set of intrinsics

rendered from 3D CAD models using appearance as latent representation. The second cycle (red) auto-encodes real images

using image intrinsics as representation. Consistency is achieved through a combination of cycle losses and shared adversarial

losses. Networks sharing the same weights are illustrated with the same color (green/yellow).

of intrinsic properties involves making additional predic-

tions about missing attributes like lighting conditions, opti-

cal aberrations, noise or higher-order light interactions. To

better capture this multi-modal relationship, we use an ad-

versarial loss between the input and its reconstruction.
An adversarial discriminator D is a classification model

trained to predict if a data sample is produced by a gener-
ative model or if it stems from the true data distribution.
To train our Intrinsic Autoencoder, we use two adversar-
ial discriminators, DI for discriminating generated images

Î{s,r} from real images Ir, and DM for discriminating gen-

erated intrinsic maps M̂{r,s} from synthetic intrinsic maps
Ms. The discriminators help our model to learn the distri-
bution of real images and synthetic intrinsics by optimizing
the following adversarial [14] loss function

Ladv(R,H,DI ,DM ) = LI
adv(R,H,DI)+LM

adv(R,H,DM ) (4)

where
LI

adv(R,H,DI) = log(DI(Ir)) + log(1−DI(R(Ms))

+ log(1−DI(R(H(Ir)))
(5)

is our novel shared adversarial image loss which dis-
criminates both between the real image Ir and the generated

synthetic image Îs = R(Ms), as well as between the real

image Ir and the reconstructed real image Îr = R(H(Ir)).
Similarly, we define the shared adversarial intrinsic loss as

LM
adv(R,H,DM ) = log(DM(Ms)) + log(1−DM (H(Ir))

+ log(1−DM (H(R(Ms))))
(6)

Using the reconstructed inputs Îr and M̂s in addition to

the generated samples Îs and M̂r for training DI and DM

makes the discriminators more robust and prevents overfit-

ting. This is especially important when a relatively small

number of 3D objects are used to create the synthetic intrin-

sic maps which can lead to a discriminator that recognizes

the model features rather that the image realism.

3.3. Implementation and Training
We train our Intrinsic Autoencoder networks R,H in

addition to the adversarial discriminators DM ,DI from

scratch by optimizing the joint objective

min
R,H

max
DI ,DM

Lcyc + Lnorm + Ladv (7)

Our framework is implemented in PyTorch [37] and trained

using Adam [23] with a learning rate of 0.0002. The De-

ferred Neural Rendering Network is a coarse-to-fine gen-

erator introduced in [41] for the deferred neural rendering

network. The input to the network is of size 256 × 512
constructed by concatenating normals, albedo and reflec-

tions. The output of the network is an RGB image of size

256×512×3. We use three networksH = {HN ,HA,HF }
for estimating the surface normals N , Albedo A and envi-

ronment reflections F , respectively, from an image I . Each

network has a ResNet architecture with 5 ResNet blocks.

Adversarial Discriminator Networks. Since the local

structure of the generated images is mostly controlled by

the input intrinsics, we want the image discriminator DI to
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mainly focus on the global realism of the output. To ad-

dress this, we use a multi-scale PatchGAN [41] discrimina-

tor which comprises two fully-convolutional networks that

classify the local image patches at two scales, full and half

resolution. The discriminator outputs a realism score for

each patch instead of a single prediction per image. This

has been shown to produce more detailed images for simi-

lar conditional image generation tasks [19, 41, 46]. The in-

trinsics discriminator DM has the same architecture except

that the input is a 9-channel stack combining all three in-

trinsic maps. We found that using a single discriminator for

the combination of the intrinsic maps performs better than

separate networks for each. This is likely due to the inter-

dependence between the different intrinsic properties that

allows the discriminator to detect inconsistencies between

the generated intrinsic maps. We provide more architecture

and training details in the supplementary material.

4. Experiments
Synthetic Data Generation. To generate the synthetic

training data, we use dataset from [2] containing 28 3D car

models covering 6 car categories (SUV, sedan, hatchback,

station wagon, mini-van and van). Apart from the geometry,

we do not need any physically-based materials or textures

for the models. Instead, we assign to each car part a sim-

ple material with only two properties, the color and a scalar

glossiness factor for computing reflection maps. We assign

each 3D car part a fixed material from a set of 18 fixed ma-

terials. Additionally, we randomly pick one of 15 materials

with different colors for the car body during the rendering

process. Next, a camera position is randomly chosen within

a radius of 8 meters and a maximum height of 3 meters. We

use a fast OpenGL based rendering engine which operates

at around 3 frames per second including the model loading

time. It outputs the surface normals of the car model in the

camera coordinate space and the albedo channels indicat-

ing the material color at each pixel without any lighting or

shading. Finally, we produce the environmental reflections

by using a 360 degree environment map from [2]. These

kind of reflections are very efficient to compute since they

only require the view vector and the surface normal and do

not rely on expensive path-tracing. We render 20,000 syn-

thetic samples of normals, albedo and reflections.

Real training data. We obtain the real images from a fine

grained car classification dataset presented in [25]. For con-

venience, we refer to this as the real car dataset. It contains

16,000 images of cars captured in various lighting condi-

tions, resolutions and poses and with different camera sen-

sors and lenses.

4.1. Baselines

Since our goal is to train with only unpaired data, we

choose to benchmark our method against two state-of-the-

art unpaired image generation approaches, CycleGAN[46]

and MUNIT[17]. However, since both methods were

originally designed for image-to-image translation rather

than deferred rendering, we setup two additional strong

baselines that highlight the importance of our contributions

in improving the quality of our results.

CycleGAN and MUNIT. CycleGAN[46] is a generic

method for translating between two domains without

available paired data. MUNIT[17] aims at producing a

diverse set of translations between different domains. We

modify the two methods slightly to use our stacked 9

channel synthetic intrinsic maps as inputs.

Without shared discriminator. In this setup, we do not

use the shared adversarial discriminator discussed in 3.2.

Instead, we only use the discriminator DI between gener-

ated image Îs, real image Ir. Similarly, the discriminator

DM is used only between synthetic intrinsics Ms and

generated intrinsics M̂r.

Only rendering cycle. Here, we train the model using only

the deferred rendering cycle discussed in (Sec. 3.1) and do

not use the decomposition cycle.

4.2. Deferred Neural Rendering

To evaluate our approach for deferred neural rendering,

we use the network R to produce images given synthetic

intrinsic maps (albedo, normals, reflections) and compare it

to other baselines, both qualitatively and quantitatively.

4.2.1 Qualitative results

Fig. 3 shows car images generated using our deferred neu-

ral renderer from the input synthetic intrinsic maps shown

above them. The car models in the evaluation set have

been previously seen by the generator, but the unique com-

bination of pose and paint color has not been seen during

training. Our approach is able to generate detailed photo-

realistic images of cars with consistent geometry and dis-

tinct parts. We emphasize that the deferred neural rendering

network is trained without any rendered or real geometry-

image pairs. Instead, it is able to learn the appearance of

different car parts from a large set of real car images.

In Fig. 4 we compare the results of our full model to vari-

ous baselines. The results clearly show the improvements in

visual quality achieved when using our full model. Specif-

ically, MUNIT appears to be unable to preserve the geom-

etry and albedo of the input in the generated image, Cy-

cleGAN images has significant artefacts on the windows,

body, etc. When training our model without the shared dis-

criminator, the resulting images suffer from irregular reflec-

tion patterns and a noisy image. This is likely due to the

strong overfitting required by the network to reproduce the

input image exactly when using only an L1 loss. The model

trained without the decomposition cycle is not able to pre-

serve the input intrinsics in terms of albedo and reflection.
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Figure 3: Images generated using our Deferred Neural Renderer. Inputs to the network are intrinsic maps consisting of

albedo, normals and reflections, shown above the generated images.

Figure 4: Qualitative Comparison with baselines on Neural Rendering. Inputs to the network are intrinsic maps consisting

of albedo, normals and reflections, shown above the generated images. Additional higher resolution results are provided in

the supplementary materials.

In figure 5, we show the effect of input intrinsic maps on

the quality of rendered images. When the model is trained

only with normals as intrinsic input, the geometry of the re-

sult is well rendered but the color of different parts poorly

defined. The model trained on both normals and albedo

demonstrates sharper image quality but the hallucinated re-

flections by the network lacks lack realistic details. Finally,

using the environmental reflections helps the network pro-

duce consistent and realistic images with sharp details.

Figure 5: Images generated using models trained with
ablated inputs.

4.2.2 Quantitative results
We evaluate the quality of generated images using Fréchet

Inception Distance(FID) [15] and Kernel Inception Dis-

tance(KID) [4]. Both metrics compute the distance between

the features of two sets of images, obtained from a pre-

trained CNN. Table 1 presents both the FID and KID be-

tween the images generated using various methods and the

real images. Our full model achieves the lowest FID and

KID values (47.6, 4.2) indicating that the rendered images

from our model are closest to the distribution of real im-

ages compared to MUNIT [17] and CycleGAN [46]. Fur-

ther, when we ablate each of the intrinsic map inputs, both

FID and KID increase substantially. Notably, in the case of

ablating albedo input, the highest increase in distances can

be observed (88.7, 5.4), implying its importance for photo-

realistic image generation. We conclude that albedo is the

most important for our task followed by normals and reflec-

tions maps. In both cases where we ablate the decomposi-

tion cycle or rendering cycle, we observe a huge increase in

the distances signifying the importance of using both cycle

consistency losses during training. Finally, training with the

setup of separate discriminators as mentioned in 4.1 leads to

an increase in the distances.
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w/ w/o

Cycle Shared Decom. w/o w/o w/o

GAN MUNIT Ours Discr Cyc. A N F

FID 103.3 99.0 47.6 59.2 99.6 88.7 60.2 56.7

KID 10.2 13.5 4.2 4.8 11.8 5.4 4.9 5.9

Table 1: FID and KID between real images and gen-
erated samples. All inputs are provided to the generator

(Albedo, Normals and Reflections).

Cycle w/o Shared w/o Decom

GAN MUNIT Ours Discr. Cyc.

Real Im 77.7% 75.6% 67.5% 68.9% 71.0%

Ours 80.0% 85.8% – 57.6% 63.8%

Table 2: Human Subject Study. Comparisons to identify

realistic images in an A/B test using Amazon Mechanical

Turk. The numbers indicate the ratio of trials where the

image from real or our model was chosen as more realistic

compared to the image from the method on the header.

4.2.3 Human Experiments
We design two experiments to measure the visual realism

of generated car images using the Amazon Mechanical Turk

platform to crowd source human evaluations. For each com-

parison, we presented 40 human subjects each with 50 im-

age pairs to choose the more realistic looking image. The

results are presented in Table 2. The first row presents ex-

periments where one image is picked from the real images

and the other is from one of the synthesis methods and pre-

sented in a random order. Images from our full model seem

to be most confused with real car image since only 67.5%

of choices were correct while in 32.5% of the trials the sub-

jects choose our images to be the real one.

In the second experiment subjects are presented with an im-

age generated by our full model and a matching image gen-

erated by one other synthesis methods. The results in the

second row of Table 2 show that subjects choose our results

to be more realistic over 80% of times when compare to Cy-

cleGAN and MUNIT. This clearly indicates a high level of

visual quality of our generated images compared to those

generated from existing methods. On the other hand, im-

ages from our ablated models appear to be much closer to

our full model visual quality.

4.3. Intrinsic Image Decomposition
4.3.1 Qualitative results
In fig. 6, we show that the intrinsic decomposition net-

work is able to decompose real car images into their intrin-

sic maps. We would like to emphasize that the model does

not have access to ground-truth intrinsic maps for real im-

ages during the training phase. Also, these car models are

not present in the synthetic training data.

w/o Shared w/o Decom. Cycle

Discr. cycle GAN MUNIT Ours

Normal Err. 17.75◦ 18.80◦ 27.82◦ 29.15◦ 14.73◦

Albedo Err. 54.00 67.21 68.18 81.44 52.74
Reflection Err. 55.60 71.00 73.18 74.75 51.74

Table 3: Errors for the Intrinsic Decomposition Task.
Our method achieves the lowest error on all tasks.

Figure 7 compares the decompositions produced by our

model to those from other baselines. Both CycleGAN [46]

and MUNIT [17] show significant artificats and inconsisten-

cies when trained to decompose real images. The USI3D

[30] fails to generalize to real models since it was trained

using synthetic data from ShapeNet [7]. Our model without

decomposition cycle also recovers noisy albedo and nor-

mals due to overfit only to synthetic data. On the other

hand, training without the shared discriminator leads to se-

vere artefacts. This is because the rendering network tries

to encode intrinsics information in the generated images in

the form of high frequency artefacts such that the decompo-

sition network can easily recover them.

4.3.2 Quantitative results
To evaluate the intrinsic maps predicted by the intrinsic im-

age decomposition network (H) we construct a synthetic

dataset containing rendered RGB images and their corre-

sponding intrinsic maps rendered using a standard Physi-

cally Based Renderer (Blender [6]). To obtain the error

between predicted and ground truth normals, we compute

the average cosine distance between them. The errors for

albedo and reflection are the average �1 distances between

the predicted and ground truth maps. Table 3 presents the

errors of various methods for predicting intrinsic maps. Our

full model has the least error for all the modalities followed

by our model without the shared discriminator, without de-

composition cycle and finally MUNIT and CycleGAN. This

indicates that our model is able to learn accurate image de-

composition while keeping generalization. Note that these

PBR-rendered images have not been presented to our net-

work during training.

4.4. Results on ShapeNet Aeroplanes
We train our model for the object class ”Aeroplanes”.

We obtain the real images from FGVC-Aircraft dataset [33]

which contains 10,000 images of aeroplanes. We use the

3D models of aeroplanes from the Shapenet dataset [7] to

obtain our intrinsic maps. We follow the process mentioned

in sec.4 to generate input training data. We use the normals

and albedo as inputs to the network. Figure 8 illustrates re-

alistic images generated using our deferred rendering net-

work, demonstrating the ability of our method to handle

low-quality mesh and texture models.

1182



Figure 6: Results of our intrinsic decomposition network on real images. The first column shows the inputs to the

network. Our model is able to decompose the sport car in first row accurately even though our synthetic training dataset

doesn’t include any sport cars at all. The car models of other inputs images are also not present in our synthetic dataset.

Figure 7: Comparison with Baselines for intrinsic decomposition. Note that USI3D [30] only produces albedo and shading

and not reflections or normals.

Figure 8: Images generated by our network trained on aeroplanes from ShapeNet [7].

5. Conclusion

In this paper, we presented a joint approach for training a

deferred rendering network for generating realistic images

from synthetic image intrinsics and an intrinsic image de-

composition network for decomposing real images of an ob-

ject into its intrinsic properties. We trained the model using

unpaired 3D models and real images. Our qualitative and

quantitative experiments revealed that using a combination

of shared adversarial losses and cycle consistency losses is

able to produce images that are both realistic and consistent

with the control input.
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