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Intrinsic AutoencodersUnpaired Datasets
Real Image Collection3D CAD Models

28 CAD models containing 
SUV, sedan, hatchback, van, etc.

16,000 Real images from
Stanford Cars dataset.

● Requires paired real training data. 
● Can learn to predict missing input data. 
● Requires no expert skills during inference.
● Fast. 

● Does not need any training data.
● Requires  high-quality materials.
● Requires expert skills to tune.
● Slow. 

Can we train neural rendering using unpaired 3D models and real images ? 

Train Jointly 


