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Abstract. We address the task of 6D pose estimation of known rigid
objects from single input images in scenarios where the objects are partly
occluded. Recent RGB-D-based methods are robust to moderate de-
grees of occlusion. For RGB inputs, no previous method works well for
partly occluded objects. Our main contribution is to present the first
deep learning-based system that estimates accurate poses for partly oc-
cluded objects from RGB-D and RGB input. We achieve this with a new
instance-aware pipeline that decomposes 6D object pose estimation into
a sequence of simpler steps, where each step removes specific aspects of
the problem. The first step localizes all known objects in the image us-
ing an instance segmentation network, and hence eliminates surrounding
clutter and occluders. The second step densely maps pixels to 3D object
surface positions, so called object coordinates, using an encoder-decoder
network, and hence eliminates object appearance. The third, and final,
step predicts the 6D pose using geometric optimization. We demonstrate
that we significantly outperform the state-of-the-art for pose estimation
of partly occluded objects for both RGB and RGB-D input.

1 Introduction

Localization of object instances from single input images has been a long-standing
goal in computer vision. The task evolved from simple 2D detection to full 6D
pose estimation, i.e. estimating the 3D position and 3D orientation of the object
relative to the observing camera. Early approaches relied on objects having suf-
ficient texture to match feature points [1]. Later, with the advent of consumer
depth cameras [2], research focused on texture-less objects [3] in increasingly
cluttered environments. Today, heavy occlusion of objects is the main perfor-
mance benchmark for one-shot pose estimation methods. Object occlusion oc-
curs in all scenarios, apart from artificial settings, hence robustness to occlusion
is crucial in applications like augmented reality or robotics.

Recent RGB-D-based methods [4,5] are robust to moderate degrees of object
occlusion. However, depth cameras fail under certain conditions, e.g . with intense
sunlight, and RGB cameras are prevalent on many types of devices. Hence, RGB-
based methods still have high practical relevance. In this work, we present a
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Fig. 1: Illustration of our modular, 3-stage pipeline for both RGB and
RGB-D input images.

system for 6D pose estimation of rigid object instances from single input images.
The system performs well for partly occluded objects. That means for both input
modalities, RGB-D and RGB, it clearly outperforms the accuracy of previous
methods.

During the last decade, computer vision has seen a large shift towards learning-
based methods. In particular, deep learning, i.e. training multi-layered neural
networks, has massively improved accuracy and robustness for many tasks, most
notably object recognition [6], object detection [7,8,9] and semantic segmenta-
tion [10,11,12]. While 6D object pose estimation has also benefited from deep
learning to some extent, with recent methods being able to estimate accurate
poses in real time from single RGB images [13,14,15], the same does not hold
when objects are partly occluded. In this case, aforementioned methods, despite
being trained with partly occluded objects, either break down [14,15] or have to
simplify the task by estimating poses from tight crops around the ground truth
object position [13]. To the best of our knowledge, we are the first to show that
deep learning can improve results considerably for objects that are moderately
to heavily occluded, particularly for the difficult case of RGB input.

At the core, our method decomposes the 6D pose estimation problem into a
sequence of three sub-tasks, or modules (see Fig. 1). We first detect the object in
2D, then we locally regress correspondences to the 3D object surface, and, finally,
we estimate the 6D pose of the object. With each sub-task, we can remove specific
aspects of the problem, such as object background and object appearance. In the
first module, 2D detection is implemented by an instance segmentation network
which estimates a tight mask for each object. Thus, we can separate the object
from surrounding clutter and occluders, making the following steps invariant
to the object environment, and allowing us to process each detected instance
individually. In the second module, we present an encoder-decoder architecture
for densely regressing so-called object coordinates [16], i.e. 3D points in the local
coordinate frame of the object which define 2D-3D correspondences between the
image and the object. The third module is a purely geometric pose optimization
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which is not learned from data because all aspects of object appearance have
been removed in the previous steps. Since we estimate 6D poses successively from
2D instance segmentation, we call our approach iPose, short for “instance-aware
pose estimation”.

Our decomposition strategy is conceptually simple, but we show that it is
considerably superior to other deep learning-based methods that try to reason
about different aspects of these steps jointly. In particular, several recent works
propose to extend state-of-the-art object detection networks to output 6D object
poses directly. Kehl et al . [14] extend the SSD object detector [9] to recognize
discretized view-points of specific objects, i.e. re-formulating pose regression as
a classification problem. Similarly, Tekin et al . [15] extend the YOLO object
detector [8] by letting image grid cells predict object presence, and simultane-
ously the 6D pose. Both approaches are highly sensitive to object occlusion, as
we will show in the experimental evaluation. Directly predicting the 6D pose
from observed object appearance is challenging, due to limited training data
and innumerable occlusion possibilities.

We see three reasons for the success of our approach. Firstly, we exploit
the massive progress in object detection and instance segmentation achieved by
methods like MNC [11] and Mask R-CNN [12]. This is similar in spirit to the
work of [14,15], but instead of extending the instance segmentation to predict
6D poses directly, we use it as a decoupled component within our step-by-step
strategy. Secondly, the rich structural output of our dense object coordinate re-
gression step allows for a geometric hypothesize-and-verify approach that can
yield a good pose estimate even if parts of the prediction are incorrect, e.g .
due to occlusion. Such a robust geometry-based step is missing in previous deep
learning-based approaches [13,14,15]. Thirdly, we propose a new data augmen-
tation scheme specifically designed for the task of 6D object pose estimation.
Data augmentation is a common aspect of learning-based pose estimation meth-
ods, since training data is usually scarce. Previous works have placed objects at
random 2D locations over arbitrary background images [17,13,14], which yields
constellations where objects occlude each other in physically impossible ways.
In contrast, our data augmentation scheme infers a common ground plane from
ground truth poses and places additional objects in a physically plausible fash-
ion. Hence, our data augmentation results in more realistic occlusion patterns
which we found crucial for obtaining good results.

We summarize our main contributions:

– We propose iPose, a new deep learning architecture for 6D object pose es-
timation which is remarkably robust w.r.t. object occlusion, using a new
three-step task decomposition approach.

– We are the first to surpass the state-of-the-art for partly occluded objects
with a deep learning-based approach for both RGB-D and RGB inputs.

– We present a new data augmentation scheme for object pose estimation
which generates physically plausible occlusion patterns, crucial for obtaining
good results.
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2 Related Work

Below, we give an overview of previous methods for 6D object pose estimation.
Note that there is a body of work regarding pose estimation of object categories,
specifically in the context of autonomous driving on datasets like KITTI [18],
see e.g . [19,20,21,22]. Because of intra-class variability, these approaches often
estimate coarse viewpoints or constrained poses, e.g . 3D poses on a ground plane.
In this work, we consider the different task of estimating full 6D poses of specific,
rigid object instances.

Early pose estimation methods were based on matching sparse features [1]
or templates [23]. Templates work well for texture-less objects where sparse
feature detectors fail to identify salient points. Hinterstoisser et al . proposed the
LINEMOD templates [3], which combine gradient and normal cues for robust
object detection given RGB-D inputs. Annotating the template database with
viewpoint information facilitates accurate 6D pose estimation [24,25,26,27,28].
An RGB version of LINEMOD [29] is less suited for pose estimation [17]. In
general, template-based methods suffer from sensitivity to occlusion [16].

With a depth channel available, good results have been achieved by voting-
based schemes [30,31,32,33,34,5]. In particular, Drost et al . [34] cast votes by
matching point-pair features which combine normal and distance information.
Recently, the method was considerably improved in [5] by a suitable sampling
scheme, resulting in a purely geometric method that achieves state-of-the-art
results for partly occluded objects given RGB-D inputs. Our deep learning-based
pipeline achieves higher accuracy, and can also be applied to RGB images.

Recently, deep learning-based methods have become increasingly popular for
object pose estimation from RGB images. Rad and Lepetit [13] presented the
BB8 pipeline which resembles our decomposition philosophy to some extent.
However, their processing steps are more tightly coupled. For example, their
initial detection stage does not segment the object, and can thus not remove
object background. Also, they regress the 6D pose by estimating the 2D location
of a sparse set of control points. We show that dense 3D object coordinate
regression provides a richer output which is essential for robust geometric pose
optimization. Rad and Lepetit [13] evaluate BB8 on occluded objects but restrict
pose prediction to image crops around the ground truth object position1. Our
approach yields superior results for partly occluded objects without using prior
knowledge about object position.

Direct regression of a 6D pose vector by a neural network, e.g . proposed by
Kendall et al . for camera localization [35], exhibits low accuracy [36]. The works
discussed in the introduction, i.e. Kehl et al . [14] and Tekin et al . [15], also
regress object pose directly but make use of alternative pose parametrizations,
namely discrete view point classification [14], or sparse control point regression

1 Their experimental setup which relies on ground truth crops is not explicitly de-
scribed in [13], but we verified this information from a private email exchange with
the authors of [13].
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[15] similar to BB8 [13]. We do not predict the 6D pose directly, but follow a
step-by-step strategy to robustly obtain the 6D pose despite strong occlusions.

Object coordinates have been used previously for object pose estimation from
RGB-D [16,37,4] or RGB inputs [17]. In these works, random forest matches
image patches to 3D points in the local coordinate frame of the object, and
the pose is recovered by robust, geometric optimization. Because few correct
correspondences suffice for a pose estimate, these methods are inherently robust
to object occlusion. In contrast to our work, they combine object coordinate
prediction and object segmentation in a single module, using random forests.
These two tasks are disentangled in our approach, with the clear advantage
that each individual object mask is known for object coordinate regression. In
this context, we are also the first to successfully train a neural network for
object coordinate regression of known objects. Overall, we report superior pose
accuracy for partly occluded objects using RGB and RGB-D inputs. Note that
recently Behl et al . [38] have trained a network for object coordinate regression
of vehicles (i.e. object class). However, our network, training procedure, and
data augmentation scheme differ from [38].

To cope well with limited training data, we propose a new data augmentation
scheme which generates physically plausible occlusion patterns. While plausible
data augmentation is becoming common in object class detection works, see
e.g . [39,40,41], our scheme is tailored specifically towards object instance pose
estimation where previous works resorted to pasting 2D object crops on arbitrary
RGB backgrounds [17,13,14]. We found physically plausible data augmentation
to be crucial for obtaining good results for partly occluded objects.

To summarize, only few previous works have addressed the challenging task
of pose estimation of partly occluded objects from single RGB or RGB-D inputs.
We present the first viable deep learning approach for this scenario, improving
state-of-the-art accuracy considerably for both input types.

3 Method

In this section, we describe our three-stage, instance-aware approach for 6D ob-
ject pose estimation. The overall workflow of our method is illustrated in Fig. 1.
Firstly, we obtain all object instances in a given image using an instance segmen-
tation network (Sec. 3.1). Secondly, we estimate dense 3D object coordinates for
each instance using an encoder-decoder network (Sec. 3.2). Thirdly, we use the
pixel-wise correspondences between predicted object coordinates and the input
image to sample 6D pose hypotheses, and further refine them using an iterative
geometric optimization (Sec. 3.3). In Sec. 3.4, we describe our object-centric data
augmentation procedure which we use to generate additional training data with
realistic occlusions for the encoder-decoder network of step 2.

We denote the RGB input to our pipeline as I and RGB-D input as I-D.
K = {1, ...,K} is a set of all known object classes, a subset of which could
be present in the image. The goal of our method is to take an image I /I-D
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containing n objects O = {O1, ..., On}, each of which has a class from K, and to
estimate their 6D poses. Below, we describe each step of our pipeline in detail.

3.1 Stage 1: Instance Segmentation

The first step of our approach, instance segmentation, recognizes the identity
of each object, and produces a fine grained mask. Thus we can separate the
RGB(-D) information pertaining only to a specific object from surrounding clut-
ter and occluders. To achieve this, we utilize instance segmentation frameworks
such as [11,12]. Given an input I, the output of this network is a set of n instance
masks M = {M1, ...,Mn} and an object class k ∈ K for each mask.

3.2 Stage 2: Object Coordinate Regression

An object coordinate denotes the 3D position of an object surface point in the
object’s local coordinate frame. Thus given a pixel location p and its predicted
object coordinate C, a (p, C) pair defines a correspondence between an image I
and object O. Multiple such correspondences, at least three for RGB-D data and
four for RGB data, are required to recover the 6D object pose (see Sec. 3.3). In
order to regress pixelwise object coordinates C for each detected object, we use
a CNN with an encoder-decoder style architecture with skip connections. The
encoder consists of 5 convolutional layers with a stride of 2 in each layer, followed
by a set of 3 fully connected layers. The decoder has 5 deconvolutional layers
followed by the 3 layer output corresponding to 3-dimensional object coordinates.
Skip connections exist between symmetrically opposite conv-deconv layers. As
input for this network, we crop a detected object using its estimated mask M ,
resize and pad the crop to a fixed size, and pass it through the object coordinate
network. The output of this network has 3 channels containing the pixelwise X,
Y and Z values of object coordinates C for mask M . We train separate networks
for RGB and RGB-D inputs.

3.3 Stage 3: Pose Estimation

In this section, we describe the geometric pose optimization step of our approach
for RGB-D and RGB inputs, respectively. This step is not learned from data,
but recovers the 6D object pose from the instance mask M of stage 1 and the
object coordinates C of stage 2.

RGB-D Setup. Our pose estimation process is inspired by the original ob-
ject coordinate framework of [16]. Compared to [16], we use a simplified scoring
function to rank pose hypotheses, and an Iterative Closest Point (ICP) refine-
ment.

In detail, we use the depth channel and the mask MO to calculate a 3D point
cloud PO associated with object O w.r.t. the coordinate frame of the camera.
Also, stage 2 yields the pixelwise predicted object coordinates CO. We seek the
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6D pose H∗O which relates object coordinates CO with the point cloud PO. For
ease of notation, we drop the subscript O, assuming that we are describing the
process for that particular object instance. We randomly sample three pixels
j1, j2, j3 from mask M , from which we establish three 3D-3D correspondences
(P j1 , Cj1), (P j2 , Cj2), (P j3 , Cj3). We use the Kabsch algorithm [42] to compute
the pose hypothesis Hi from these correspondences. Using Hi, we transform Cj1 ,
Cj2 , Cj3 from the object coordinate frame to the camera coordinate frame. Let
these transformed points be T j . We compute the Euclidean distance, ‖P j , T j‖,
and if the distances of all three points are less than 10% of the object diameter,
we add Hi to our hypothesis pool. We repeat this process until we have collected
210 hypotheses. For each hypothesis H, we obtain a point cloud P ∗(H) in the
camera coordinate system via rendering the object CAD model. This lets us
score each hypothesis using

SRGB-D(H) =

∑
j∈M

[
||P j − P ∗j(H)|| < d/10

]
|M |

, (1)

where [·] returns 1 if the enclosed condition is true, and the sum is over pixels
inside the mask M and normalized. The score SRGB-D(H) computes the average
number the pixels inside the mask for which the rendered camera coordinates
P ∗j(H) and the observed camera coordinates P j agree, up to a tolerance of 10%
of the object diameter d. From the initial pool of 210 hypotheses we select the
top 20 according to the score SRGB-D(H). Finally, for each selected hypothesis,
we perform ICP refinement with P as the target, the CAD model vertices as the
source, and Hi as initialization. We choose the pose with the lowest ICP fitting
error HICP for further refinement.
Rendering-Based Refinement. Under the assumption that the estimateHICP

is already quite accurate, and using the instance mask M , we perform the fol-
lowing additional refinement: using HICP, we render the CAD model to obtain
a point cloud Pr of the visible object surface. This is in contrast to the previous
ICP refinement where all CAD model vertices were used. We fit Pr inside the
mask M to the observed point cloud P via ICP, to obtain a refining transfor-
mation Href. This additional step pushes Pr towards the observed point cloud
P , providing a further refinement to HICP. The final pose is thus obtained by
H∗RGB-D = HICP ∗Href.

Our instance-based approach is a clear advantage in both refinement steps,
since we can use the estimated mask to precisely carve out the observed point
cloud for ICP.

RGB Setup. Given RGB data, we follow Brachmann et al . [17] and esti-
mate the pose of the objects through hypotheses sampling [16] and pre-emptive
RANSAC [43]. At this stage, the predicted object mask M and the predicted
object coordinates C inside the mask are available. For each pixel j at the 2D
position pj inside M , the object coordinate network estimates a 3D point Cj in
the local object coordinate system. Thus, we can sample 2D-3D correspondences
between 2D points of the image and 3D object coordinate points from the area
inside the object mask. Our goal is to search for a pose hypothesis H∗ which
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(a) (b) (c)

Fig. 2: Object centric data augmentation pipeline. (a) If the cropped object
(Ape) is inserted within the red area, it can cause a physically plausible occlusion
for the center object (Can). (b) shows the resulting augmented RGB image, and
(c) shows the resulting augmented depth image.

maximizes the following score:

SRGB(H) =
∑
j∈M

[
‖pj −AHCj‖2 < τin

]
, (2)

where A is the camera projection matrix, τin is a threshold, and [·] is 1 if the
statement inside the bracket is true, otherwise 0. The score SRGB(H) counts the
number of pixel-residuals of re-projected object coordinate estimates which are
below τin. We use pre-emptive RANSAC to maximize this objective function.
We start by drawing four correspondences from the predicted mask M . Then, we
solve the perspective-n-point problem (PnP) [44,45] to obtain a pose hypothesis.
If the re-projection error of the initial four correspondences is below threshold
τin we keep the hypothesis. We repeat this process until 256 pose hypotheses
have been collected. We score each hypothesis with SRGB(H), but only using
a sub-sampling of N pixels inside the mask for faster computation. We sort
the hypotheses by score and discard the lower half. We refine the remaining
hypotheses by re-solving PnP using their inlier pixels according to SRGB(H).
We repeat scoring with an increased pixel count N , discarding and refining
hypotheses until only one hypothesis H∗RGB remains as the final estimated pose.

3.4 Data Augmentation

Data augmentation is crucial for creating the amount of data necessary to train a
deep neural network. Additionally, data augmentation can help to reduce dataset
bias, and introduce novel examples for the network to train on. One possibil-
ity for data augmentation is to paste objects on a random background, where
mutually overlapping objects occlude each other. This is done e.g . in [17,13,14]
and we found this strategy sufficient for training our instance segmentation net-
work in step 1. However, the resulting images and occlusion patterns are highly
implausible, especially for RGB-D data where objects float in the scene, and
occlude each other in physically impossible ways. Training the object coordinate
network in step 2 with such implausible data made it difficult for the network to
converge and also introduced bias towards impossible object occlusion configura-
tions. In the following, we present an object-centric data augmentation strategy
which generates plausible object occlusion patterns, and analyze its impact on
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Fig. 3: Impact of our data augmentation. The top row illustrates the on-
object occlusion distribution of the base training set before augmentation and
the bottom row shows the same for augmented data using our object centric
data augmentation. For a given part of the model, red indicates that the part is
often occluded, while blue corresponds to rare occlusion in a given dataset.

the dataset. We assume that for each target object k in the set of all known ob-
jects K, a sequence of images is available where the object is not occluded. For
each image, we compute the ground plane on which the target object stands on,
as well as the distance between its base point and the camera. Then, as shown
in Fig. 2(a)(red), a surface of interest is defined on the ground plane in front
of the target object, representing a cone with an opening angle of 90◦. Next,
we search for images of other objects in K, where the ground plane normal is
close to that of the target object, and which are located in the defined surface of
interest, based on their distance from the camera. Finally, by overlaying one or
more of these chosen objects in front of the target object, we can generate mul-
tiple augmented RGB and depth images (c.f . Fig. 2(b,c)). Using this approach,
the resulting occlusion looks physically correct for both the RGB and the depth
image.

To analyze the impact of our data augmentation scheme, we visualize the
distribution of partial occlusion on the object surface in the following way: we
first discretize the 3D bounding box surrounding each object into 20 × 20 × 20
voxels. Using the ground truth 6D pose and the 3D CAD model, we can render
the full mask of the object. Each pixel that lies inside the rendered mask but
not inside the ground truth mask is occluded. We can look-up the ground truth
object coordinate of each occluded pixel, and furthermore the associated bound-
ing box voxel. We use the voxels as histogram bins and visualize the occlusion
frequency as colors on the surface of the 3D CAD model.

The impact of our object-centric data augmentation for two objects of the
LINEMOD dataset [24] is illustrated in Fig. 3. Firstly, by looking at the vi-
sualization (top row), we notice that the un-augmented data contains biased
occlusion samples (irregular distribution of blue and red patches) which could
induce overfitting on certain object parts, leading to reduced performance of
the object coordinate network of step 2. In the second row, we see that the
augmented data has a more regular distribution of occlusion. This visualization
reveals the bias in the base training set, and demonstrates the efficacy of our
object-centric data augmentation procedure in creating unbiased training data
samples.
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4 Experiments

In this section, we present various experiments quantifying the performance of
our approach. In Sec. 4.1, we introduce the dataset which we use for evaluating
our system. In Sec. 4.2, we compare the performance of our approach to existing
RGB and RGB-D-based pose estimation approaches. In Sec. 4.2, we analyze the
contribution of various modules of our approach to the final pose estimation
performance. Finally, in Sec. 4.3 and 4.4, we discuss the performance of our
instance segmentation and object coordinate estimation networks. Please see the
supplemental materials for a complete list of parameter settings of our pipeline.

4.1 Datasets and Implementation

We evaluate our approach on occludedLINEMOD, a dataset published by Brach-
mann et al . [16]. It was created from the LINEMOD dataset [24] by annotating
ground truth 6D poses for various objects in a sequence of 1214 RGB-D images.
The objects are located on a table and embedded in dense clutter. Ground truth
poses are provided for eight of these objects which, depending on the camera
view, heavily occlude each other, making this dataset very challenging. We test
both our RGB and RGB-D-based methods on this dataset.

To train our system, we use a separate sequence from the LINEMOD dataset
which was annotated by Michel et al . [4]. For ease of reference we call this the
LINEMOD-M dataset. LINEMOD-M comes with ground truth annotations of
seven objects with mutual occlusion. One object of the test sequence, namely the
Driller, is not present in this training sequence, so we do not report results for
it. The training sequence is extremely limited in the amount of data it provides.
Some objects are only seen from few viewpoints and with little occlusion, or
occlusion affects only certain object parts.

Training Instance Segmentation. To train our instance segmentation net-
work with a wide range of object viewpoints and diverse occlusion examples, we
create synthetic images in the following way. We use RGB backgrounds from
the NYUD dataset [46], and randomly overlay them with objects picked from
the original LINEMOD dataset [24]. While this data is physically implausible,
we found it sufficient for training the instance segmentation component of our
pipeline. We combine these synthetic images with LINEMOD-M to obtain 9000
images with ground truth instance masks. We use Mask R-CNN [12] as our
instance segmentation method. For training, we use a learning rate of 1e-3, mo-
mentum of 0.9 and weight decay of 1e-4. We initialize Mask R-CNN with weights
trained on ImageNet [47], and finetune on our training set.

Training Object Coordinate Regression. For training the object coordinate
estimation network, we found it important to utilize physically plausible data
augmentation for best results. Therefore, we use the LINEMOD-M dataset along
with the data obtained using our object-centric data augmentation pipeline de-
scribed in Sec. 3.4. Note that the test sequence and our training data are strictly
separated, i.e. we did not use parts of the test sequence for data augmentation.
We trained our object coordinate network by minimizing a robust Huber loss
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function [7] using ADAM [48]. We train a separate network for each object. We
rescale inputs and ground truth outputs for the network to 256x256px patches.

4.2 Pose Estimation Accuracy

RGB Setup. We estimate object poses from RGB images ignoring the depth
channel. We evaluate the performance using the 2D Projection metric introduced
by Brachmann et al . [17]. This metric measures the average re-projection error
of 3D model vertices transformed by the ground truth pose and the estimated
pose. A pose is accepted if the average re-projection error is less than a threshold.

In Table 1, we compare the performance of our pipeline to existing RGB-
based methods using two different thresholds for the 2D projection metric. We
see that our approach outperforms the previous works for most of the objects
significantly. Our RGB only pipeline surpasses the state-of-the-art for a 5 pixel
threshold by 13% and for a 10 pixel threshold by 39% on average. Note that
the results of BB8 [13] were obtained from image crops around the ground truth
object position. Similar to [13] and [15], we do not report results for EggBox
since we could not get reasonable results for this extremely occluded object
using RGB only. Note that SSD-6D [14] and SSS-6D [15] completely fail for
partly occluded objects. We obtained the results of SSS-6D directly from [15],
and of SSD-6D [14] using their publicly available source code and their pre-
trained model. However, they did not release their pose refinement method,
thus we report their performance without refinement. In the supplement, we
show the accuracy of SSD-6D using different 2D re-projection thresholds. Most
of the detections of SSD-6D are far off (see also their detection performance in
Fig. 7, right), therefore we do not expect refinement to improve their results
much. We show qualitative pose estimation results for the RGB setting in Fig 4.

Table 1: Results using RGB only. Comparison of our pose estimation accu-
racy for RGB inputs with competing methods. Italic numbers were generated
using ground truth crops, thus they are not directly comparable.

Acceptance Threshold: 5 px Acceptance Threshold: 10 px
BB8[13] Brachmann Ours BB8[13] Brachmann SSD-6D SSS-6D Ours

(GT crops) [17] (GT crops) [17] [14] [15]

Ape 28.5% 31.8% 24.2% 81.0% 51.8% 0.5% 0% 56.1%
Can 1.2% 4.5% 30.2% 27.8% 19.1% 0.6% 0% 72.4%
Cat 9.6% 1.1% 12.3% 61.8% 7.1% 0.1% 0% 39.7%
Duck 6.8% 1.6% 12.1% 41.3% 6.4% 0% 5% 50.1%
Glue 4.7% 0.5% 25.9% 37.7% 6.4% 0% 0% 55.1%
HoleP. 2.4% 6.7% 20.6% 45.4% 2.6% 0.3% 1% 61.2%

Avg 8.9% 7.7% 20.8% 49.2% 17.1% 0.3% 0.01% 56.0%

RGB-D Setup. Similar to the RGB setup, we measure accuracy as the percent-
age of correctly estimated poses. Following Hinterstoisser et al . [24], we accept a
pose if the average 3D distance between object model vertices transformed using
ground truth pose and predicted pose lies below 10% of the object diameter.
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OursInput image SSD-6D

Fig. 4: Qualitative results from the RGB setup. From left to right: input
image, our results, results of SSD-6D [14].

Fig. 5: Qualitative results from the RGB-D setup. Our approach reliably
estimates poses for objects which are heavily occluded. The middle column shows
estimated object masks of our instance segmentation step.
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In Fig. 6, left, we compare the performance of our approach to Michel et al .
[4] and Hinterstoisser et al . [5]. We significantly outperform the state-of-the-art
on average by 6%, and show massive improvements for some objects. Fig. 5 shows
qualitative results from our pipeline. Fig. 6, right represents the percentage of
correct poses as a function of occluded object surface. We see that for cases of
mild occlusion, our method surpasses accuracy of 90% for all objects. For cases
of heavy occlusion (above 60%) our method can still recover accurate poses.

Object Michel et al. [4] Hinterstoisser et al. [5] Ours

Ape 80.7% 81.4% 83.0%

Can 88.5% 94.7% 89.6%

Cat 57.8% 55.2% 57.5%

Duck 74.4% 79.7% 76.6%

Eggbox 47.6% 65.5% 82.1%

Glue 73.8% 52.1% 78.8%

Holep. 96.3% 95.5% 97.0%

Avg. 74.2% 74.9% 80.7%

Fig. 6: Left. Comparison of our pose estimation accuracy (RGB-D) with compet-
ing methods. Right. The percentage of correctly estimated poses as a function
of the level of occlusion.

Ablation Study. We investigate the contribution of each step of our method
towards the final pose estimation accuracy for the RGB-D setup. As discussed
before, our method consists of three steps, namely instance mask estimation,
object coordinate regression and pose estimation. We compare to the method of
Brachmann et al . [16] which has similar steps, namely soft segmentation (not
instance-aware), object coordinate regression, and a final RANSAC-based pose
estimation. The first two steps in [16] are implemented using a random forest,
compared to two separate CNNs in our system. Fig 7, left shows the accuracy
for various re-combinations of these modules. The first row is the standard base-
line approach of [16] which achieves an average accuracy of 52.9%. In the second
row, we replace the soft segmentation estimated by [16] with a standard instance
segmentation method, namely Multi-task Network Cascades (MNC) [11]. The
instance masks effectively constrain the 2D search space which leads to better
sampling of correspondences between depth points and object coordinate pre-
dictions. Next, we replace the object coordinate predictions of the random forest
with our CNN-based predictions. Although we still perform the same pose op-
timization, this achieves an 4.6% performance boost, showing that our encoder-
decoder network architecture predicts object coordinates more precisely. Next,
we use the instance masks as above and object coordinates from our network
with our geometric ICP-based refinement which further boosts the accuracy to
75.7%. Finally, in the last row, we use our full pipeline with masks from Mask
R-CNN followed by our other modules to achieve state-of-the-art performance
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of 80.7%. The table clearly indicates that the accuracy of our pipeline as a whole
improves when any of the modules improve, e.g . by better instance segmentation.

Mask Obj. Coord. Pose Estimation Accuracy

RF[16] RF[16] Brachmann [16] 52.9%

Ours (MNC) RF[16] Brachmann [16] 56.4%

Ours (MNC) Ours (CNN) Brachmann [16] 61.0%

Ours (MNC) Ours (CNN) Ours 75.7%

Ours (Mask R-CNN) Ours (CNN) Ours 80.6%

Method MAP

Hinterstoisser [3] 0.21

Brachmann [17] 0.51

SSD-6D [14] 0.38

SSS-6D [15] 0.48

Ours 0.84

Fig. 7: Left. Pose estimation accuracies on the RGB-D dataset using various
combinations of mask estimation, object coordinates estimation and pose esti-
mation approaches. Right. Comparison of 2D detection performance.

4.3 Instance Segmentation

Since we cannot hope to estimate a correct pose for an object that we do not
detect, the performance of instance segmentation is crucial for our overall ac-
curacy. Fig. 7, right shows the mean average precision of our method for a 2D
bounding box IoU > 0.5 compared to other methods. Since our RGB only in-
stance segmentation network is used for both, the RGB and RGB-D setting, the
MAP is equal for both settings. We significantly outperform all the other pose
estimation methods, showing that our decoupled instance segmentation step can
reliably detect objects, making the task for the following modules considerably
easier.

4.4 Object Coordinate Estimation

We trained our object coordinate network with and without our data augmenta-
tion procedure (Sec. 3.4). We measure the average inlier rate, i.e. object coordi-
nate estimates that are predicted within 2cm of ground truth object coordinates.
When the network is trained only using the LINEMOD-M dataset, the average
inlier rate is 44% as compared to 52% when we use the data created using our
object centric data augmentation procedure. A clear 8% increase in the inlier
rate shows the importance of our proposed data augmentation.

5 Conclusion

We have presented iPose, the first deep learning-based approach capable of es-
timating accurate poses of partly occluded objects. Our approach surpasses the
state-of-the-art for both image input modalities, RGB and RGB-D. We attribute
the success of our method to our decomposition philosophy, and therefore the
ability to leverage state-of-the-art instance segmentation networks. We are also
the first to successfully train an encoder-decoder network for dense object coor-
dinate regression, that facilitates our robust geometric pose optimization.
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